• Matéria: Matemática
  • Autor: jorjinho123
  • Perguntado 3 anos atrás

Uma herança de R$ 2.950.000 foi dividida aos três herdeiros de forma inversamente proporcional aos números 2, 5 e 7. Sendo assim, o herdeiro que recebeu a maior parte herdou um total de:

A) R$ 1.950.000

B) R$ 2.100.000

C) R$ 1.800.000

D) R$ 1.750.000

E) R$ 900.000​

Respostas

respondido por: viancolz
4

Resposta:

D) R$1.750.000,00

Explicação passo a passo:

a/(1/2) =

b/(1/5) =

c/(1/7) =

(a + b + c)/(1/2 + 1/5 + 1/7) =

2.950.000/(59/70) = 3.500.000

a) (1/2) = 3.500.000 /2 = R$1.750.000

b) (1/5) = 3.500.000 / 5 = R$700.000

c) (1/7) = 3.500.000 /7 = R$500.000

Vilmar

respondido por: aavpm
1

A resposta correta é a letra D, podendo ser identificado pela formação da equação, considerando que o dado aborda que é inversamente proporcional o valor da herança total, onde o herdeiro 1 possui maior valor, sendo de R$ 1.750.000

Como calcular o valor da herança?

A questão aponta a relação inversamente proporcional recebida pelos herdeiros e comenta o valor total que os três receberam, assim, é possível efetuar uma equação para encontrar o valor do herdeiro que mais recebeu.

Veja como calcular:

  • Herdeiro 1 = x
  • Herdeiro 2 = y
  • Herdeiro 3 = z

Logo, considerando os números que são apresentados inversamente proporcional, temos:

\frac{x}{\frac{1}{2} }  = \frac{y}{\frac{1}{5} } = \frac{z}{\frac{1}{7} }

2x = 5y = 7z = k

x = k/2

y = k/5

z = k/7

Como a questão pontuou que x + y + z = 2950000, então:

k/2 + k/5 + k/7 = 2950000

35k + 14k + 10k/70 = 2950000

59k/70 = 2950000

k = 2950000*70/59

k = 206500000/59

k = 3500000

Como a questão solicitou o valor recebido pelo herdeiro que recebeu a maior parte, então devemos escolher o herdeiro x já que possui menor divisor (2):

x = k/2

x = 3500000/2

x = 1750000

Assim, o herdeiro 1 é o que receberá maior valor, sendo de R$1.750.000,00

Conheça sobre regra de três: https://brainly.com.br/tarefa/51251894

#SPJ2

Perguntas similares