• Matéria: Matemática
  • Autor: keilianepsousa
  • Perguntado 3 anos atrás

resolva a inequação simultanea 8<x2-2x-8<0​

Respostas

respondido por: CyberKirito
3

\large\boxed{\begin{array}{l}\rm 8&lt;x^2-2x-8&lt;0\implies\begin{cases}\rm x^2-2x-8&gt;8~(I)\\\rm x^2-2x-8&lt;0~~(II)\end{cases}\end{array}}

\large\boxed{\begin{array}{l}\rm x^2-2x-8&gt;8\\\rm x^2-2x-8-8&gt;0\\\rm x^2-2x-16&gt;0\\\underline{\sf fac_{\!\!,}a}\\\rm f(x)=x^2-2x-16\\\underline{\sf zeros~de~f(x):}\\\rm x^2-2x-16=0\\\rm x^2-2x+1-17=0\\\rm (x-1)^2=17\\\rm x-1=\pm\sqrt{17}\\\rm x-1=\sqrt{17}\longrightarrow x= 1+\sqrt{17}\\\rm x-1=-\sqrt{17}\longrightarrow x=1-\sqrt{17}\\\rm f(x)&gt;0\iff x&lt;1-\sqrt{17}~ou~x&gt;1+\sqrt{17}\\\rm S_1=\{x\in\mathbb{R}/x&lt;1-\sqrt{17}~ou~x&gt;1+\sqrt{17}\}\end{array}}

\large\boxed{\begin{array}{l}\rm x^2-2x-8&lt;0\\\underline{\sf fac_{\!\!,}a}\\\rm g(x)=x^2-2x-8\\\underline{\sf zeros~de~g(x):}\\\rm x^2-2x-8=0\\\rm x^2-2x+1-9=0\\\rm (x-1)^2=9\\\rm x-1=\pm\sqrt{9}\\\rm x-1=\pm3\\\rm x-1=3\longrightarrow x=3+1=4\\\rm x-1=-3\longrightarrow x=1-3=-2\\\rm g(x)&lt;0\iff -2&lt;x&lt;4\\\rm S_2=\{x\in\mathbb{R}/-2&lt;x&lt;4\}\end{array}}

\large\boxed{\begin{array}{l}\rm S_1\cap S_2=\varnothing\\\rm S=\varnothing\end{array}}

Anexos:
Perguntas similares