• Matéria: Matemática
  • Autor: Anaclara69251
  • Perguntado 3 anos atrás

A razão entre a soma dos termos da PA(4,10,16,. , 940) e a soma dos termos da PG(2, 4, 8,. , 4096) é aproximadamente:


a. 6

b. 8

c. 7

d. 9

e. 10.

Respostas

respondido por: rafames1000
0

Resposta:

d. 9

Explicação passo a passo:

a_{1} =4

a_{2} =10

r=a_{2} -a_{1} =10-4=6

a_{n} =940

n=?

S_{n} =?

a_{1} +(n-1).r=a_{n}

(n-1).r=a_{n}-a_{1}

n-1=\frac{a_{n}-a_{1}}{r}

n=\frac{a_{n}-a_{1}}{r}+1

n=\frac{a_{n}-a_{1}}{r}+1.\frac{r}{r}

n=\frac{a_{n}-a_{1}}{r}+\frac{r}{r}

n=\frac{a_{n}-a_{1}+r}{r}

n=\frac{940-4+6}{6}

n=\frac{942}{6}

n=157

S_{n} =\frac{(a_{1} +a_{n} ).n}{2}

S_{157} =\frac{(4 +940 ).157}{2}

S_{157} =\frac{944 .157}{2}

S_{157} =\frac{148208}{2}

S_{157} =74104

a_{1} =2

a_{2} =4

q=\frac{a_{2}}{a_{1}} =\frac{4}{2} =2

a_{n} =4096

n=?

S_{n} =?

a_{1} .q^{n-1}=a_{n}

q^{n-1}=\frac{a_{n}}{a_{1}}

q^{n}.q^{-1}=\frac{a_{n}}{a_{1}}

q^{n}.\frac{1}{q}=\frac{a_{n}}{a_{1}}

q^{n}=\frac{\frac{a_{n}}{a_{1}}}{\frac{1}{q} }

q^{n}=\frac{a_{n} .q}{a_{1} }

2^{n}=\frac{4096 .2}{2 }

2^{n}=4096

2^{n}=2^{12}

n=12

S_{n} =\frac{a_{1}.(q^{n}-1)  }{q-1}

S_{12} =\frac{2.(2^{12}-1)  }{2-1}

S_{12} =\frac{2.(4096-1)  }{1}

S_{12} =2.4095

S_{12} =8190

\frac{S_{157} }{S_{12} } =\frac{74104}{8190}

9

Perguntas similares