• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 3 anos atrás

\large\boxed{ \rm~limites~}

\large \boxed{ \begin{array}{l} \rm\dfrac{lim}{x\rightarrow8} ~ \dfrac{x {}^{2} - 64}{x - 8} \end{array}}
ᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠ​

Respostas

respondido por: DGUST
2

Explicação passo-a-passo:

\large \boxed{ \begin{array}{l} \rm\dfrac{lim}{x\rightarrow8} ~ \dfrac{x {}^{2} - 64}{x - 8}=\dfrac{(x-8).(x+8)}{(x-8)}=(x+8)\end{array}}

\large \boxed{ \begin{array}{l} \rm\dfrac{lim}{x\rightarrow8} ~ \dfrac{x {}^{2} - 64}{x - 8}=8+8=16 \end{array}}

ᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠᅠ

respondido por: joelmaazevedonunes00
5

\large \boxed{ \begin{array}{l} \rm\dfrac{lim}{x\rightarrow8} ~ \dfrac{x {}^{2} - 64}{x - 8}  \\  \\   \rm\dfrac{lim}{x\rightarrow8} \:   \:  \dfrac{x {}^{2} - 64 }{x - 8} \\   \\  \rm \dfrac{lim}{x\rightarrow8}  \:  \: x - 8 \\  \\ 0 \\  \\ 0 \\  \\ \rm  \dfrac{lim}{x\rightarrow8  } \:  \:  \dfrac{(x - 8) \times (x + 8)}{x - 8}  \\  \\  \rm \dfrac{lim}{x\rightarrow8}  \:  \: x + 8 \\  \\ 8 + 8 \\  \\  \boxed{ \boxed{16}} \\  \\  \\  \\  \large \boxed{ \begin{array}{l} \rm\dfrac{lim}{x\rightarrow8} ~ \dfrac{x {}^{2} - 64}{x - 8}  =  \boxed{ \boxed{ \boxed{16}}}\end{array}} \end{array}}

Perguntas similares