• Matéria: Matemática
  • Autor: fodassser
  • Perguntado 3 anos atrás

Atividade de matemática alguem pode me ajudar?

Anexos:

FabioAoMolho: sei não kk

Respostas

respondido por: lucasoliveirauovj3xr
0

Resposta:

Explicação passo a passo:

1. f(x) = 3x² - bx + c
f(2) = 10

3.2² - b.2 + c  = 10
12 - 2b + c = 10
c = -2 + 2b

f(-1) = 3

3.(-1)² - b.(-1) + (-2 + 2b) = 3

3 + b - 2 + 2b = 3

3b = 2

b = 2/3

c = -2 + 2b

c = -2 + 2(2/3)

c = -2 + 4/3

c = -2/3


f(x) = 3x² - (2/3)x - 2/3

= f(3) + 2f(1) =

= [3.3² - (2/3) . 3 - 2/3] + 2.[3.1² - (2/3).1 - 2/3] =
= 73/3 + 2.(5/3) =
= 73/3 + 10/3 =

= 83/3

2. a) y = x² - bx + 7, sendo y = -1 quando x = 1

-1 = 1² - b.(1) + 7

-1 = 1 - b + 7

b = 9

b) y = -2x² - bx + c, sendo y = -4 quando x = 1 e b + c = 4

-4 = -2.(1)² - b.1 + c
-4 = -2 - b + 4 - b
-4 = 2 - 2b

2b = 6

b = 3

c = 4 - b
c = 4 - 3

c = 1

4.

3x² + bx - c = 0

x' + x'' = -b/3 = 15
x' . x'' = c/3 = 7

b = -45

c = 21

b - c = ?

-45 - 21 = -66

5.  
3x² - 6x + (2k - 1) = 0

Δ = b² - 4ac

Δ = (-6)² - 4.(3).(2k-1)

Δ = 36 - 12(2k -1)

Δ = 36 - 24k + 12

Δ = 48 - 24k

48 - 24k > 0

-24k > -48
-k > -2 . (-1)
k < 2  (A)

Δ > 0 (raízes reais e diferentes)

6.
y = (m² - 4)x² - (m + 2)x - 1

(m² - 4) ≠ 0

m² ≠ 4

m ≠ ±2

Perguntas similares