• Matéria: Matemática
  • Autor: melof7472
  • Perguntado 3 anos atrás

converte em radianos 60°

Respostas

respondido por: VitiableIndonesia
1

\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{ \color{green} \boxed{Olá\:tudo\:bem?}}}}}}} \\  \\ ~\huge\mid{\boxed{\bf{\blue{Matem\acute{a}tica}}}\mid}

60°

60° \times  \frac{\pi}{180°} rad

\cancel{ 60° } \div 60° \times  \frac{\pi}{\cancel{ 180° } \div 60°} rad

\boxed{ \color{green} \boxed{{  \frac{\pi}{3}rad  }}}

{\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}} \\  \\ {\boxed{ \color{blue} \boxed{ 26 |02|22  }}}{\boxed{ \color{blue} \boxed{Espero \:  ter  \: ajudado \: ☆}}}

respondido por: solkarped
3

✅ Após resolver os cálculos, concluímos que o valor do referido ângulo em radianos é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf x = \frac{\pi}{3}rad\:\:\:}}\end{gathered}$}

Seja o ângulo:

       \Large\displaystyle\text{$\begin{gathered} \theta = 60^{\circ}\end{gathered}$}

Implementando um regra de três simples, temos:

     \Large\displaystyle\text{$\begin{gathered} \frac{\pi}{180^{\circ}}rad = \frac{x}{60^{\circ}}\end{gathered}$}

      \Large\displaystyle\text{$\begin{gathered} x = \frac{60^{\circ}\pi}{180^{\circ}}rad\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered} x = \frac{60^{\circ}\div60\pi}{180^{\circ}\div60}rad\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered} x = \frac{\pi}{3}rad\end{gathered}$}

✅ Portanto, o valoro ângulo procurado em radianos é:

           \Large\displaystyle\text{$\begin{gathered} x = \frac{\pi}{3}rad\end{gathered}$}

 

Saiba mais:

  1. https://brainly.com.br/tarefa/48326889
  2. https://brainly.com.br/tarefa/47884705
  3. https://brainly.com.br/tarefa/47785365
  4. https://brainly.com.br/tarefa/49200164
  5. https://brainly.com.br/tarefa/42804830

Anexos:
Perguntas similares