A sequência (x,4,y,z) é uma progressão geométrica e (x,y,z-2) é uma progressão aritmética, com y<0. Assinale a alternativa que dá o valor de z. a. 2√2 b. 8 c. 16 d. 4√2 e. 2
Respostas
Pelos cálculos realizados, podemos concluir que o valor de z destas progressões é .
Explicação
Temos as seguintes informações:
O objetivo é encontramos o valor de z.
- Progressão Geométrica:
Vamos iniciar montando algumas expressões com a P.G dada. Faremos isto através da definição de razão, que é basicamente a divisão de um termo pelo seu antecessor imediato.
- Como a razão é sempre a mesma em toda a progressão, então todas expressões acima devem ser iguais, através desta propriedade.
Se todas são iguais, podemos fazer a combinação de cada uma delas de 2 em 2, isto é, igualar uma a outra, pois assim geraremos expressões dependentes de x, y e z.
Não temos a capacidade de encontrar equações que sejam dependentes apenas de z ou y, já que para determiná-las, devemos usar duas equações das três que possuímos, ou seja, ficaremos sempre gerando uma equação que já temos. A única possibilidade é isolar a variável x. Então:
- Substituindo I) em II):
- Substituindo I) em III):
Resolvendo a equação do segundo grau pelo anulamento de produto, isto é, em um produto de resultado 0, um dos termos deve ser igual a 0, mas como não temos certeza, igualamos ambos.
De acordo com a questão, , então vamos descartar o valor que obtemos, onde y = 0 e ficaremos apenas com o outro, já que não sabemos se y será ou não negativo.
- Progressão Aritmética:
Para a P.A, vamos apenas usar uma propriedade que nos diz que o termo central é igual a média dos extremos. Logo:
Como sabemos os valores de z e y em função de x, podemos então substituir nessa relação acima.
Para determinar x, devemos resolver esta equação de terceiro grau. Vale ressaltar que a melhor forma de resolução é por meio da fatoração, já que resolver este tipo de equação é um pouco desgastante.
Podemos usar mais uma vez o anulamento de produto, ou seja, igualar ambas a 0.
Portanto temos três valores de x.
- Para saber qual é o certo para este caso, basta lembrar que o valor de y deve ser menor que 0 (y < 0).
Então vamos substituir em uma das equações e observar qual o valor que faz com que isso será verdadeiro.
Portanto o valor certo é x = -4√2. Sabendo disto, vamos substituí-lo e o seu valor respectivo para y e encontrar finalmente z.
Espero ter ajudado
Leia mais sobre em:
https://brainly.com.br/tarefa/6068168
https://brainly.com.br/tarefa/6535552
Resposta:
Explicação passo a passo:
LETRA (e)