• Matéria: Matemática
  • Autor: fabriciofortuna12
  • Perguntado 3 anos atrás

Resultado integral:
Anexo foto abaixo

Anexos:

simonessilva184: oiii
marciocbe: oi
simonessilva184: TD bem com vc
marciocbe: sim e vc
simonessilva184: bem tmb
simonessilva184: tu tem quantos anos?
simonessilva184: bye vou entregar o telefone pra mãe
simonessilva184: aqui vc pode fingir ser meu amante
simonessilva184: ??
simonessilva184: não pode deixar

Respostas

respondido por: marciocbe
0

Resposta:

Olá boa tarde!

Aplicando a propriedade:

\int\limits {f(x)+g(x)} \, dx =\int\limits {f(x)} \, dx +\int\limits{g(x)} \, dx

A primitiva (integral) da função dada é:

\int\limits {y^2} \, dy +\int\limits {4y} \, dy +\int\limits {(-8)} \, dy

Resposta:

= \frac{y^3}{3} +\frac{4y^2}{2} - 8y +C

Perguntas similares