• Matéria: Matemática
  • Autor: damicaeltb
  • Perguntado 3 anos atrás

1) Trace a área limitada pelas funções usando o Geogebra dada e calcule esta área: y = x² - 2 e y = 2

Respostas

respondido por: solkarped
11

✅ Após resolver os cálculos, concluímos que a área entre as referidas funções é:

 \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S = \int_{-2}^{2}(-x^{2} + 4)\,dx = \frac{32}{3}\,u.\,a.\:\:\:}}\end{gathered}$}

Sejam as funções polinomiais:

                          \Large\begin{cases}\tt y = x^{2} - 2\\ \tt y = 2\end{cases}

Organizando as funções temos:

                          \Large\begin{cases}\tt f(x) = x^{2} - 2\\ \tt g(x) = 2\end{cases}

Para resolver esta questão, devemos:

  • Obter o intervalo de integração. Para isso fazemos:

                  \Large\displaystyle\text{$\begin{gathered}\tt f(x) = g(x)\end{gathered}$}

             \Large\displaystyle\text{$\begin{gathered}\tt x^{2} - 2 = 2\end{gathered}$}

                       \Large\displaystyle\text{$\begin{gathered}\tt x^{2} = 2 + 2\end{gathered}$}

                       \Large\displaystyle\text{$\begin{gathered}\tt x^{2} = 4\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered}\tt x = \pm\sqrt{4}\end{gathered}$}

                         \Large\displaystyle\text{$\begin{gathered}\tt x = \pm2\end{gathered}$}

           Portanto, o intervalo de integração é:

                   \Large\displaystyle\text{$\begin{gathered}\tt I = (x', x'') = (-2, 2)\end{gathered}$}

  • calcular a área limitada pelas funções.

             \Large\displaystyle\text{$\begin{gathered}\tt S = \int_{a}^{b} \left[g(x) - f(x)\right]\,dx\end{gathered}$}

         Onde:

              \Large\begin{cases} \tt S = \acute{A}rea\:entre\:as\:curvas\\\tt a = Limite\:inferior\:intervalo\\\tt b = Limite\:superior\:intervalo\\\tt g(x) = Func_{\!\!,}\tilde{a}o\:mais\:acima\\\tt f(x) = Func_{\!\!,}\tilde{a}o\:mais\:abaixo\end{cases}

           Então, temos:

              \Large\displaystyle\text{$\begin{gathered}\tt S = \int_{-2}^{2}\left[2 - (x^{2} - 2)\right]\,dx\end{gathered}$}

                  \Large\displaystyle\text{$\begin{gathered}\tt = \int_{-2}^{2}\left[2 - x^{2} + 2\right]\,dx\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered}\tt = \int_{-2}^{2}\left[-x^{2} + 4\right]\,dx\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{-x^{2 + 1}}{2 + 1} + 4x + c\bigg)\bigg|_{-2}^{2}\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{-x^{3}}{3} + 4x + c\bigg)\bigg|_{-2}^{2}\end{gathered}$}

                   \large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{-(2^{3})}{3} + 4\cdot2 + c\bigg) - \bigg(\frac{-(-2)^{3}}{3} + 4\cdot(-2) + c\bigg)\end{gathered}$}

                   \Large\displaystyle\text{$\begin{gathered}\tt = \bigg(\frac{-8}{3} + 8 + c\bigg) - \bigg(\frac{8}{3} - 8 + c\bigg)\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered}\tt = -\frac{8}{3} + 8 + c - \frac{8}{3} + 8 - c\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered}\tt = -\frac{8}{3} + 8 - \frac{8}{3} + 8\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered}\tt = \frac{-8 + 24 - 8 + 24}{3}\end{gathered}$}

                    \Large\displaystyle\text{$\begin{gathered}\tt = \frac{32}{3}\end{gathered}$}

✅ Portanto, a área é:

     \Large\displaystyle\text{$\begin{gathered}\tt S = \int_{-2}^{2}(-x^{2} + 4)\,dx = \frac{32}{3}\,u.\,a.\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/13443083
  2. https://brainly.com.br/tarefa/26094604
  3. https://brainly.com.br/tarefa/22266678
  4. https://brainly.com.br/tarefa/51823021
  5. https://brainly.com.br/tarefa/38453776
  6. https://brainly.com.br/tarefa/51837328
  7. https://brainly.com.br/tarefa/25265066
  8. https://brainly.com.br/tarefa/52068651
  9. https://brainly.com.br/tarefa/24160100
  10. https://brainly.com.br/tarefa/46169125
  11. https://brainly.com.br/tarefa/52558140
  12. https://brainly.com.br/tarefa/51514978
  13. https://brainly.com.br/tarefa/29006550

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe  \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas similares