• Matéria: Matemática
  • Autor: FioxPedo
  • Perguntado 3 anos atrás

Derive a função q(x) = ftgx_e^-2x eθ cosθdθ.​

Anexos:

Respostas

respondido por: Skoy
6

Desejamos calcular a derivada da função q(x), sendo a mesma dada da seguinte forma:

\Large\displaystyle\text{$\begin{gathered} \tt q(x)= \int ^{\tan(x)}_{e^{-2x}}e^\theta  \cos(\theta)d\theta \end{gathered}$}

Aplicando a integração por partes, temos que:

\Large\displaystyle\text{$\begin{gathered} \tt u=\cos(\theta) \implies du=-\sin(\theta) d\theta \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \tt dv=e^\theta d\theta \implies v=e^\theta\end{gathered}$}

E com isso surge que:

\Large\displaystyle\text{$\begin{gathered} \tt q(x)=e^\theta  \cos(\theta)\Big|_{e^{-2x}}^{\tan(x)}+\int _{e^{-2x}}^{\tan(x)} e^\theta \sin(\theta)d\theta  \end{gathered}$}

Aplicando novamente a integração por partes, ficamos da seguinte forma:

\Large\displaystyle\text{$\begin{gathered} \tt u=\sin(\theta) \implies du=\cos(\theta) d\theta \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \tt dv=e^\theta d\theta \implies v=e^\theta\end{gathered}$}

Logo:

\Large\displaystyle\text{$\begin{gathered} \tt q(x)=e^\theta  \cos(\theta)\Big|_{e^{-2x}}^{\tan(x)}+\left[e^\theta\sin(\theta)\Big|_{e^{-2x}}^{\tan(x)}-\int _{e^{-2x}}^{\tan(x)}e^\theta \cos(\theta)d\theta\right]  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \tt q(x)=e^\theta \cos(\theta)\Big|_{e^{-2x}}^{\tan(x)}+e^\theta \sin(\theta)\Big|_{e^{-2x}}^{\tan(x)}-\int _{e^{-2x}}^{\tan(x)}e^\theta \cos(\theta)d\theta \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \tt 2q(x)=e^\theta \cos(\theta)\Big|_{e^{-2x}}^{\tan(x)}+e^\theta \sin(\theta)\Big|_{e^{-2x}}^{\tan(x)} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \tt q(x)=\frac{e^\theta \cos(\theta)\Big|_{e^{-2x}}^{\tan(x)}+e^\theta \sin(\theta)\Big|_{e^{-2x}}^{\tan(x)}}{2} \end{gathered}$}

Aplicando o teorema fundamental do cálculo e derivando, temos por fim que a q'(x) é igual a:

\Large\displaystyle\text{$\begin{gathered} \boxed{\tt q'(x)=e^{\tan \left(x\right)}\sec ^2\left(x\right)\cos \left(\tan \left(x\right)\right)+2e^{-2x+e^{-2x}}\cos \left(e^{-2x}\right)}\end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/48616510


Nitoryu: Muito bom grande mestre skoy :D
Skoy: Muito obrigado! :)
Perguntas similares