• Matéria: Matemática
  • Autor: ja1212778
  • Perguntado 3 anos atrás

2) Encontre o ponto médio nos seguintes casos: a) R (8,3) e s (6,9) B) t (-4,-6) e u (8,20) c) w (-7,8) e Z (9,-16)​

Respostas

respondido por: CyberKirito
2

\Large\boxed{\begin{array}{l}\underline{\rm Ponto\,m\acute edio\,de\,um\,segmento}\\\rm Dado\,os\,pontos\,A(x_A,y_A)\,e\,B(x_B,y_B)\\\rm o\,ponto\,m\acute edio\,que\,passa\,por\,A\,e\,B\\\rm\acute e\,representado\,por\,M(x_M,y_M)\,e\,dado\,por\\\boxed{\boxed{\boxed{\boxed{\sf x_M=\dfrac{x_A+x_B}{2}}}}}\,\rm e\,\boxed{\boxed{\boxed{\boxed{\rm y_M=\dfrac{y_A+y_B}{2}}}}}\end{array}}

\Large\boxed{\begin{array}{l}\rm a)~\sf R(8,3)~~S(6,9)\\\sf x_M=\dfrac{8+6}{2}=\dfrac{14}{2}=7\\\\\sf y_M=\dfrac{3+9}{2}=\dfrac{12}{2}=6\\\\\huge\boxed{\boxed{\boxed{\boxed{\boxed{\sf M(7,6)}}}}}\end{array}}

\Large\boxed{\begin{array}{l}\rm b)~\sf T(-4,-6)~~U(8,20)\\\sf x_M=\dfrac{-4+8}{2}=\dfrac{4}{2}=2\\\\\sf y_M=\dfrac{-6+20}{2}=\dfrac{14}{2}=7\\\\\huge\boxed{\boxed{\boxed{\boxed{\sf M(2,7)}}}}\end{array}}

\Large\boxed{\begin{array}{l}\rm c)~\sf W(-7,8)~~Z(9,-16)\\\\\sf x_M=\dfrac{-7+9}{2}=\dfrac{2}{2}=1\\\\\sf y_M=\dfrac{8-16}{2}=-\dfrac{8}{2}=-4\\\\\huge\boxed{\boxed{\boxed{\boxed{\sf M(1,-4)}}}}\end{array}}

Perguntas similares