• Matéria: Matemática
  • Autor: babihcristina01
  • Perguntado 3 anos atrás

- DETERMINE AS SOMAS ALGEBRICAS:
 \frac{7}{3}  \sqrt[3]{2}  - 2 \sqrt[3]{2}  -  \frac{5}{4}  \sqrt[3]{2}
me ajudem pfffffffffff​

Respostas

respondido por: VitiableIndonesia
1

~\huge\mid{\boxed{\bf{\blue{Matem\acute{a}tica}}}\mid}

 \frac{7}{3}   \sqrt[3]{2}   - 2 \sqrt[3]{2} -  \frac{5}{4}   \sqrt[3]{2}

 \frac{7}{3}  \times  \frac{ \sqrt[3]{2} }{1}  - 2 \sqrt[3]{2}  -  \frac{5}{4}  \times  \frac{ \sqrt[3]{2} }{1}

 \frac{7 \sqrt[3]{2} }{3}  - 2 \sqrt[3]{2}  -  \frac{5 \sqrt[3]{2} }{4}

 \frac{4 \times 7 \sqrt[3]{2} }{4 \times 3}  -  \frac{2 \sqrt[3]{2} }{1}   -  \frac{3 \times 5 \sqrt[3]{2} }{3 \times 4}

 \frac{28 \sqrt[3]{2} }{12}  -  \frac{2 \sqrt[3]{2} }{1}  -  \frac{15 \sqrt[3]{2} }{12}

 \frac{28 \sqrt[3]{2} }{12}  -  \frac{12 \times 2 \sqrt[3]{2} }{12}  -  \frac{15 \sqrt[3]{2} }{12}

 \frac{28 \sqrt[3]{2} }{12}  -  \frac{24 \sqrt[3]{2} }{12}  -  \frac{15 \sqrt[3]{2} }{12}

 \frac{28 \sqrt[3]{2}  - 24 \sqrt[3]{2}  - 15  \sqrt[3]{2}  }{12}

Resposta:  \color{green} \boxed{{  -  \frac{11 \sqrt[3]{2} }{12}  }}

{\huge\boxed { {\bf{E}}}\boxed { \red {\bf{a}}} \boxed { \blue {\bf{s}}} \boxed { \gray{\bf{y}}} \boxed { \red {\bf{}}} \boxed { \orange {\bf{M}}} \boxed {\bf{a}}}{\huge\boxed { {\bf{t}}}\boxed { \red {\bf{h}}}}

Perguntas similares