• Matéria: Informática
  • Autor: saphiralis
  • Perguntado 3 anos atrás

O código abaixo é de um trecho de programa que trabalha com árvores binárias. Cada vértice da árvore pode ter no máximo 2 filhos. Analise a execução deste código.

v1 = Vertice("S")

v2 = Vertice("A")

v3 = Vertice("R")

v4 = Vertice("Z")

v5 = Vertice("G")

v6 = Vertice("L")

v7 = Vertice("X")

v7 = Vertice("Y")

v8 = Vertice("M")

v9 = Vertice("N")

v1.esquerda = v9

v1.direita = v8

v2.esquerda = v7

v3.direita = v6

v3.esquerda = v5

v4.direita = v1

v5.esquerda = v2

Assinale a alternativa que apresenta o resultado desta execução e, se aplicável qual é um possível código que falta para que uma árvore tenha altura igual a 4.

A) Resultará 2 árvores. Ambas com altura igual 2. Um possível código é v6.esquerda = v4
B) Haverá 4 árvores. Aquelas cujas raízes são R, S e A tem altura igual a 1. A árvore cuja raiz é Z tem altura igual a zero. E mesmo que ligando todas as árvores não será possível ter altura igual a 4, pois somando suas alturas no máximo temos 3.
C) Haverá 3 árvores. As raízes são R, X e Z. Os vértices-folha são L, M, N, X e Y. O código que falta pode ser: v2.esquerda = v4
D) Uma árvore com 9 vértices e 8 arestas, sendo 5 folhas que são L, N, X, G e R, com altura igual a 4. A raiz é S. Nenhum código a mais é necessário.
E) Haverá 2 árvores. As raízes são R e Z. Respectivamente com altura 3 e 2. Os vértices-folha da primeira árvore são L e Y. Os vértices-folha da segunda árvore são M e N. Código que falta: v5.direita = v4.

Respostas

respondido por: lcomp
1

E) Haverá 2 árvores. As raízes são R e Z. Respectivamente com altura 3 e 2. Os vértices-folha da primeira árvore são L e Y. Os vértices-folha da segunda árvore são M e N. Código que falta: v5.direita = v4.

Perguntas similares