• Matéria: Matemática
  • Autor: RICARDOW2
  • Perguntado 3 anos atrás

16. (Unioeste-PR) Uma máquina de fabricar suco possui três torneiras que despejam 5 litros de suco por minuto cada uma. As três torneiras (A, B e C) estão sendo utilizadas para encher embalagens com capacidades de 30 litros, 40 litros e 90 litros, respectivamente. O processo de enchimento é feito de forma automática e sem interrupções. Num dado instante, as três torneiras terminam de encher as emba- lagens simultaneamente. Com base nestas informações, é correto afirmar que as três torneiras vão outra vez comple- tar as embalagens simultaneamente, após:
a) 1,2 hora
b) 2 horas.
c) 40 minutos.
d) 1,4 hora,
e) 50 minutos.​

Respostas

respondido por: ncastro13
1

A alternativa A é a correta. As três torneiras vão terminar de encher as embalagens de forma simultânea novamente após 1,2 hora.

A partir do cálculo do tempo de enchimento de cada uma as torneiras, podemos determinar o Mínimo Múltiplo Comum (MMC) entre eles. O MMC entre eles será o menor tempo para as torneiras terminem de encher as embalagens de forma simultânea.

Tempo de Enchimento

São dados os volumes das embalagens, assim como a velocidade de enchimento das torneira. Podemos relacionar o tempo de enchimento t , a velocidade de enchimento da torneira v ao volume da embalagem V pela fórmula:

  • v=\frac{V}{t}  \Leftrightarrow t =\frac{V}{v}

Calculando o tempo para cada uma das torneiras:

  • t_{A} =\frac{V_{A}}{v} =\frac{30}{5}=6min
  • t_{B} =\frac{V_{B}}{v} =\frac{40}{5}=8min
  • t_{C} =\frac{V_{C}}{v} =\frac{90}{5}=18min

Mínimo Múltiplo Comum

Agora que já sabemos o tempo de enchimento de cada uma das máquinas, podemos encontrar em quanto tempo elas vão terminar de encher simultaneamente.

O valor que estamos procurando é o Mínimo Múltiplo Comum entre 6, 8 e 18. Nesse problema, o MMC representa o menor tempo em que as torneiras levam para encher de forma simultânea.

Calculando o MMC entre 6, 8 e 18, obtemos:

  • MMC(6, 8 , 18) = 72min

As alternativas estão em horas, para convertermos a unidade de minutos para horas é basta dividirmos por 60:

72 \text{ min} \cdot \frac{1 \text{ hora}}{60 \text{ min}} =\frac{72}{60}=\frac{60+12}{60}  =1+\frac{12}{60} =1+\frac{1}{5} =1,2h

O menor tempo que as torneiras levam para encher de forma simultânea novamente é 1,2 hora. A alternativa A é a correta.

Para saber mais sobre MMC, acesse: https://brainly.com.br/tarefa/45182109

Espero ter ajudado, até a próxima :)

Anexos:
Perguntas similares