• Matéria: Matemática
  • Autor: 12giovannaFC
  • Perguntado 3 anos atrás

Calcule o resultado da expressão e assinale a alternativa correta:

(A) 200
(B) 165
(C) 145
(D) 110
(E) 100

Anexos:

Respostas

respondido por: Nasgovaskov
1

Resposta:

Dica: resolva as raízes da direita pra esquerda.

\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=\Big(\sqrt{98+2}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+4}}}\bigg)]\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=\Big(\sqrt{100}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{9}}}\bigg)

\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=(10)\cdot\Big(\sqrt{119+\sqrt{1+3}}\Big)

\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=(10)\cdot\Big(\sqrt{119+\sqrt{4}}\Big)

\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=(10)\cdot\big(\sqrt{119+2}\big)

\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=(10)\cdot\big(\sqrt{121}\big)

\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=(10)\cdot(11)

\red{\sf\Big(\sqrt{98+\sqrt{4}}\Big)\cdot\bigg(\sqrt{119+\sqrt{1+\sqrt{5+\sqrt{16}}}}\bigg)=110}

Letra D


12giovannaFC: obrigadaa
Perguntas similares