• Matéria: Matemática
  • Autor: florencerb28
  • Perguntado 3 anos atrás

Calcule a integral de linha f x²dx + y²dy + z²dz ao longo do caminho C = C₁ + C₂. C₁ = (0,0,0) a (1,2,-1) e C₂ = (1,2,-1) a (3,2,0)​

Respostas

respondido por: Lukyo
2

Resposta:  \displaystyle\int_C x^2\,dx+y^2\,dy+z^2\,dz=\frac{35}{3}.

Explicação passo a passo:

Calcular a integral de linha do campo vetorial

    \mathbf{F}(x,\,y,\,z)=x^2\mathbf{i}+y^2\mathbf{j}+z^2\mathbf{k}

ao longo do caminho C=C_1\cup C_2, sendo

  •     C_1 o segmento de reta vai do ponto (0,\,0,\,0) a (1,\,2,\,-1);
  •     C_2 o segmento de reta vai do ponto (1,\,2,\,-1) a (3,\,2,\,0).

Parametrizando as curvas C_1 e C_2:

    C_1:~\begin{cases}~x=0+t\\ ~y=0+2t\\ ~z=0-t \end{cases}\\\\\\\Longleftrightarrow\quad C_1:~\begin{cases}~x=t\\ ~y=2t\\ ~z=-t \end{cases}\qquad \mathrm{com~}0\le t\le 1.

    C_2:~\begin{cases}~x=1+(3-1)t\\ ~y=2+(2-2)t\\ ~z=-1+(0-(-1))t \end{cases}\\\\\\ \Longleftrightarrow\quad C_2:~\begin{cases}~x=1+2t\\ ~y=2+0t\\ ~z=-1+1t \end{cases}\\\\\\ \Longleftrightarrow\quad C_2:~\begin{cases}~x=1+2t\\ ~y=2\\ ~z=-1+t \end{cases}\qquad\mathrm{com~}0\le t\le 1.

Logo, temos C_1(t)=(t,\,2t,\,-t) e C_2(t)=(1+2t,\,2,\,-1+t), com 0\le t\le 1.

Encontrando os vetores tangentes às curvas C_1 e C_2:

    \Longrightarrow\quad \begin{cases}C_1'(t)=\langle 1,\,2,\,-1\rangle\\\\ C_2'(t)=\langle 2,\,0,\,1\rangle \end{cases}

A integral pedida é

    \displaystyle =\int_C\mathbf{F}\cdot d\mathbf{r}\\\\\\ =\int_C x^2\,dx+y^2\,dy+z^2\,dz\\\\\\ =\int_C \langle x^2,\,y^2,\,z^2\rangle \cdot d\mathbf{r}\\\\\\ =\int_{C_1\cup C_2} \langle x^2,\,y^2,\,z^2\rangle \cdot d\mathbf{r}

   \displaystyle=\int_{C_1} \langle x^2,\,y^2,\,z^2\rangle \cdot d\mathbf{r}+\int_{C_2} \langle x^2,\,y^2,\,z^2\rangle \cdot d\mathbf{r}

   \displaystyle=\int_0^1 \langle t^2,\,(2t)^2,\,(-t)^2\rangle \cdot C_1'(t)\,dt+\int_0^1 \langle (1+2t)^2,\,(2)^2,\,(-1+t)^2\rangle \cdot C_2'(t)\,dt

    \displaystyle =\int_0^1 \langle t^2,\,4t^2,\,t^2\rangle \cdot \langle 1,\,2,\,-1\rangle \,dt+\int_0^1 \langle 1+4t+4t^2,\,4,\,1-2t+t^2 \rangle \cdot \langle 2,\,0,\,1 \rangle\,dt

Efetuando os produtos escalares dos vetores, obtemos

    \displaystyle =\int_0^1 \big(t^2\cdot 1+4t^2\cdot 2+t^2\cdot (-1)\big)dt+\int_0^1 \big((1+4t+4t^2)\cdot 2+4\cdot 0+(1-2t+t^2)\cdot 1\big)dt

    \displaystyle =\int_0^1 \big(t^2+8t^2-t^2\big)\,dt+\int_0^1 \big((2+8t+8t^2)+0+(1-2t+t^2)\big)dt\\\\\\ =\int_0^1 8t^2\,dt+\int_0^1 \big(3+6t+9t^2\big)dt\\\\\\=\int_0^1 \big(8t^2+(3+6t+9t^2)\big)dt

    \displaystyle =\int_0^1 \big(3+6t+17t^2\big)dt\\\\\\ =\left.\left(3t+\dfrac{6t^2}{2}+\dfrac{17t^3}{3}\right)\right|_0^1\\\\\\ =\left.\left(3t+3t^2+\frac{17t^3}{3}\right)\right|_0^1

    =\left(3\cdot 1+3\cdot 1^2+\dfrac{17\cdot 1^3}{3}\right)-\left(3\cdot 0+3\cdot 0^2+\dfrac{17\cdot 0^3}{3}\right)\\\\\\ =\left(3+3+\dfrac{17}{3}\right)-(0)

    =\dfrac{9+9+17}{3}\\\\\\ =\dfrac{35}{3}\quad\longleftarrow\quad\mathsf{resposta.}

Dúvidas? Comente.

Bons estudos! :-)

Perguntas similares