2. Na figura a seguir, o pentágono regular PQRST foi decomposto, a partir de seu centro C,
em 10 triângulos retângulos congruentes entre si.
R
S
R
S
a. Determine a medida dos ângulos agudos dos triângulos retângulos com vértices no
centro C do pentágono.
b. Calcule a medida do outro ângulo agudo dos triângulos retângulos e assinale-a na
figura.
c. Qual é a medida de cada ângulo interno do pentágono regular?
a
Respostas
a) A medida do ângulo agudo do triângulo retângulo com vértice em C é 36°.
b) A medida do outro ângulo agudo é 54°.
c) A medida de cada ângulo interno do pentágono regular é 108°.
Ângulos internos dos polígonos
a) Como o pentágono regular PQRST foi decomposto, a partir de seu centro C, em 10 triângulos retângulos, o arco de 360° foi dividido em 10 partes iguais. Logo:
360 ÷ 10 = 36°
b) A soma dos ângulos internos de um triângulo é 180°. Como é informado que o triângulo é retângulo, um de seus ângulos mede 90°. A medida do outro já descobrimos: é 36°. Portanto:
x + 90° + 36° = 180°
x + 126° = 180°
x = 180° - 126°
x = 54°
c) Cada ângulo interno do pentágono regular é formado por dois ângulo x. Logo:
x + x = 54° + 54° = 108°
Mais sobre ângulos internos em:
https://brainly.com.br/tarefa/6886593