Respostas
Explicação passo-a-passo:
a) (3 + x)² = 3² + 2 . 3 . x + x² = 9 + 6x + x²
b) (x + 5)² = x² + 2 . x . 5 + 5² = x² + 10x + 25
c) (x + y)² = x² + 2 . x . y + y² = x² + 2xy + y²
d) (x + 2)² = x² + 2 . x . 2 + 2² = x² + 4x + 4
e) (3x + 2)² = (3x)² + 2 . 3 . x . 2 + 2² = 9x² + 12x + 4
f) (2x + 1)² = (2x)² + 2 . 2 . x . 1 + 1² = 4x² + 4x + 1
g) (5 + 3x)² = 5² + 2 . 5 . 3x + (3x)² = 25 + 30x + 9x²
h) (2x + y)² = (2x)² + 2 . 2 . x . y + y² = 4x² + 4xy + y²
i) (r + 4s)² = r² + 2 . r . 4 + (4s)² = r² + 8rs + 16s²
j) (10x + y)² = (10x)² + 2 . 10 . x . y + y² = 100x² + 20xy + y²
l) (3y + 3x)² = (3y)² + 2 . 3 . y . 3x + (3x)² = 9y² + 18xy + 9x²
m) (5 + n)² = 5² + 2 . 5 . n + n² = 25 + 10n + n²
n) (3x + 5)² = (3x)² + 2 . 3 . x . 5 + 5² = 9x² + 30x + 25
o) (a + ab)² = a² + 2 . a . ab + (ab)² = a² + 2a²b + a²b²
p) (2x + xy)² = (2x)² + 2 . 2 . x . x . y + (xy)² = 4x² + 4x²y + x²y²
q) (a² + 1)² = (a²)² + 2 . a² . 1 + 1² = a⁴ + 2a² + 1
r) (y³ + 3)² = (y³)² + 2 . y³ . 3 + 3² = y⁶ + 6y³ + 9
s) (a² + b²)² = (a²)² + 2 . a² . b² + (b²)² = a⁴ + 2a²b² + b⁴
t) (x + 2y³)² = x² + 2 . x . 2y³ + (2y³)² = x² + 4xy³ + 4y⁶
u) (x + 1/2)² = x² + 2 . x . 1/2 + (1/2)² = x² + x + 1/4
v) (2x + 1/2)² = (2x)² + 2 . 2 . x . 1/2 + (1/2)² = 4x² + 2x + 1/4