Respostas
a100 = a1 + 99r
a100 = 9 + 99.4
a100 = 9 + 396
a100 = 405
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da P.A. (9, 13, 17,...), tem-se:
a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 9
c)centésimo termo (a₁₀₀): ?
d)número de termos (n): 100 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 100ª), equivalente ao número de termos.)
e)Embora não se saiba o valor do centésimo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem e, para que isso aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 13 - 9 ⇒
r = 4 (Razão positiva, conforme prenunciado no item e acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A, para obter-se o centésimo termo:
an = a₁ + (n - 1) . r ⇒
a₁₀₀ = a₁ + (n - 1) . (r) ⇒
a₁₀₀ = 9 + (100 - 1) . (4) ⇒
a₁₀₀ = 9 + (99) . (4) ⇒ (Veja a Observação 2.)
a₁₀₀ = 9 + 396 ⇒
a₁₀₀ = 405
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O 100º termo da P.A.(9, 13, 17, ...) é 405.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₁₀₀ = 405 fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o centésimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₁₀₀ = a₁ + (n - 1) . (r) ⇒
405 = a₁ + (100 - 1) . (4) ⇒
405 = a₁ + (99) . (4) ⇒
405 = a₁ + 396 ⇒ (Passa-se 396 ao 1º membro e altera-se o sinal.)
405 - 396 = a₁ ⇒
9 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 9 (Provado que a₁₀₀ = 405.)
→Veja outras tarefas relacionadas à progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/20439559
https://brainly.com.br/tarefa/21344405
https://brainly.com.br/tarefa/3404913
https://brainly.com.br/tarefa/3239029
https://brainly.com.br/tarefa/20035193
https://brainly.com.br/tarefa/25406318
https://brainly.com.br/tarefa/20035310