• Matéria: Matemática
  • Autor: leonardozufa
  • Perguntado 3 anos atrás

Calcule a tg de alfa

Anexos:

Respostas

respondido por: NatanYT
0

Resposta:

a)7/6=1,16666667 b)7/5=1,4 c)✓6=2,44948974 d)3✓6/2=3.67423461417 e) 2√6=4,89897949


leonardozufa: No caso, essas são as alternativas, preciso saber a tangente do ângulo marcado no triângulo
respondido por: auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{a^2 = b^2 + c^2 - 2\:.\:b\:.\:c\:.\:cos\:\alpha}

\mathsf{7^2 = 5^2 + 6^2 - 2\:.\:5\:.\:6\:.\:cos\:\alpha}

\mathsf{49 = 25 + 36 - 60\:.\:cos\:\alpha}

\mathsf{60\:.\:cos\:\alpha = 61 - 49}

\mathsf{60\:.\:cos\:\alpha = 12}

\mathsf{cos\:\alpha = \dfrac{12}{60}}

\boxed{\boxed{\mathsf{cos\:\alpha = \dfrac{1}{5}}}}

\mathsf{sen^2\alpha + cos^2\alpha = 1}

\mathsf{sen^2\alpha + \left(\dfrac{1}{5}\right)^2 = 1}

\mathsf{sen^2\alpha = 1 - \dfrac{1}{25}}

\mathsf{sen^2\alpha = \dfrac{25 - 1}{25}}

\mathsf{sen^2\alpha = \dfrac{24}{25}}

\boxed{\boxed{\mathsf{sen\:\alpha = \dfrac{2\sqrt{6}}{5}}}}

\mathsf{tg\:\alpha = \dfrac{sen\:\alpha }{cos\:\alpha }}

\mathsf{tg\:\alpha = \dfrac{2\sqrt{6}}{\not5}\:.\:\dfrac{\not5}{1}}

\boxed{\boxed{\mathsf{tg\:\alpha = 2\sqrt{6}}}}\leftarrow\textsf{letra E}

Perguntas similares