• Matéria: Matemática
  • Autor: JacksonBrain
  • Perguntado 3 anos atrás

Solucione a equação:

( \sqrt{2 +  \sqrt{3} } ) ^{r}  + ( { \sqrt{2 -  \sqrt{3} } }) ^{r}  = 14

Respostas

respondido por: auditsys
5

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{\sqrt{(2 + \sqrt{3}})^r + \sqrt{(2 - \sqrt{3}})^r = 14}

\mathsf{\sqrt{(2 - \sqrt{3}})^{-r} + \sqrt{(2 - \sqrt{3}})^r = 14}

\mathsf{\dfrac{1}{\sqrt{(2 - \sqrt{3}})^{r}} + \sqrt{(2 - \sqrt{3}})^r = 14}

\mathsf{1 + \sqrt{(2 - \sqrt{3}})^{r^2} = 14(\sqrt{2 - \sqrt{3}})^r}

\mathsf{\sqrt{(2 - \sqrt{3}})^{r^2} - 14(\sqrt{2 - \sqrt{3}})^r + 1 = 0}

\mathsf{y = \sqrt{(2 - \sqrt{3}})^{r}}

\mathsf{y^2 - 14y + 1 = 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = (-14)^2 - 4.1.1}

\mathsf{\Delta = 196 - 4}

\mathsf{\Delta = 192}

\mathsf{y = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{14 \pm \sqrt{192}}{2} \rightarrow \begin{cases}\mathsf{y' = \dfrac{14 + 8\sqrt{3}}{2} = 7 + 4\sqrt{3}}\\\\\mathsf{y'' = \dfrac{14 - 8\sqrt{3}}{2} = 7 - 4\sqrt{3}}\end{cases}}

\mathsf{\sqrt{(2 - \sqrt{3}})^{r} = (7 - 4\sqrt{3})}

\mathsf{(2 - \sqrt{3})^{\frac{r}{2}} = (7 - 4\sqrt{3})}

\mathsf{log\:(2 - \sqrt{3})^{\frac{r}{2}} = log\:(7 - 4\sqrt{3})}

\mathsf{\dfrac{r}{2}\:.\:log\:(2 - \sqrt{3}) = log\:(7 - 4\sqrt{3})}

\mathsf{\dfrac{r}{2} = log_{2 - \sqrt{3}}\:(7 - 4\sqrt{3})}

\mathsf{\dfrac{r}{2} = 2}

\mathsf{r = 4}

\mathsf{\sqrt{(2 - \sqrt{3}})^{r} = (7 + 4\sqrt{3})}

\mathsf{(2 - \sqrt{3})^{\frac{r}{2}} = (7 + 4\sqrt{3})}

\mathsf{log\:(2 - \sqrt{3})^{\frac{r}{2}} = log\:(7 + 4\sqrt{3})}

\mathsf{\dfrac{r}{2}\:.\:log\:(2 - \sqrt{3}) = log\:(7 + 4\sqrt{3})}

\mathsf{\dfrac{r}{2} = log_{2 - \sqrt{3}}\:(7 + 4\sqrt{3})}

\mathsf{\dfrac{r}{2} = -2}

\mathsf{r = -4}

\boxed{\boxed{\mathsf{S = \{4;-4\}}}}


JacksonBrain: Sua inteligência é admirável.
Math739: Concordo Jackson.
Perguntas similares