• Matéria: Matemática
  • Autor: Lukyo
  • Perguntado 3 anos atrás

Dados x,\,y\in\mathbb{R}, tais que

     \left\{\begin{array}{l} x+xy+y=2+3\sqrt{2}\\\\ x^2+y^2=6\end{array}\right.

encontre o valor de |x+y+1|.

Respostas

respondido por: CyberKirito
21

\Large\boxed{\begin{array}{l}\begin{cases}\sf x+xy+y=2+3\sqrt{2}\\\sf x^2+y^2=6\end{cases}\\\sf x+xy+y=2+2\sqrt{2}+\sqrt{2}\\\sf x=2\\\sf y=\sqrt{2}\\\sf perceba\,que\\\sf x^2+y^2=2^2+(\sqrt{2})^2=4+2=6.\\\sf ou~seja\\\sf |x+y+1|=|2+\sqrt{2}+1|=|3+\sqrt{2}|\\\sf \end{array}}

\Large\boxed{\begin{array}{l}\sf Mas~|x|=\sqrt{x^2}\\\sf \sf |3+\sqrt{2}|=\sqrt{(3+\sqrt{2})^2}\\\sf |3+\sqrt{2}|=\sqrt{9+6\sqrt{2}+2}\\\sf |3+\sqrt{2}|=\sqrt{11+6\sqrt{2}}\\\sf |3+\sqrt{2}|=\sqrt{11+\sqrt{72}}\\\underline{\rm Radical\,duplo}\\\sf \sqrt{A\pm\sqrt{B}}=\sqrt{\dfrac{A+C}{2}}\pm\sqrt{\dfrac{A-C}{2}}\\\\\sf onde~C=\sqrt{A^2-B}\\\sf \sqrt{11+\sqrt{72}}=\sqrt{A+\sqrt{B}}\\\sf A=11~~B=72\\\sf C=\sqrt{A^2-B}\\\sf C=\sqrt{11^2-72}\\\sf C=\sqrt{121-72}\\\sf C=\sqrt{49}\\\sf C=7\end{array}}

\Large\boxed{\begin{array}{l}\sf\sqrt{11+\sqrt{72}}=\sqrt{\dfrac{11+7}{2}}+\sqrt{\dfrac{11-7}{2}}\\\\\sf\sqrt{11+\sqrt{72}}=\sqrt{\dfrac{18}{2}}+\sqrt{\dfrac{4}{2}}\\\\\sf\sqrt{11+\sqrt{72}}=\sqrt{9}+\sqrt{2}\\\sf \sqrt{11+\sqrt{72}}=3+\sqrt{2}\end{array}}

\Large\boxed{\begin{array}{l}\sf|3+\sqrt{2}|=\sqrt{(3+\sqrt{2})^2}=\sqrt{11+\sqrt{72}}\\\sf |3+\sqrt{2}|=3+\sqrt{2}\\\sf portanto\\\sf |x+y+1|=3+\sqrt{2}\checkmark\end{array}}


Camponesa: Essa é pra os Brabos mesmos !! ❤️
Liziamarcia: Perfeita
BorgesBR: brabao demais , parabéns
SocratesA: Excelente
CyberKirito: obg :)
Lukyo: Obrigado! :-)
Math739: Ótima resposta Rubens.
otavio9422370: me ajudar por favor
gabrielcguimaraes: Torcida para a lenda!! Impecável resposta.
Liziamarcia: As duas estão excelentes
respondido por: mariocezar
8

x + xy + y = 2 + 3 \sqrt{2}  =  >  \\  \\ 2x + 2xy + 2y = 4 + 6 \sqrt{2}  \\ x^{2}  + y ^{2}  \:  \:  \:  \:  \: ( +)   \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =   \\ x^{2}  + y^{2}  + 2x + 2xy + 2y = 10 + 6 \sqrt{2}  \\  \\ x ^{2}  + y^{2}  + 1 + 2x + 2xy + 2y = 11 + 6 \sqrt{2}  \\  \\  \\ (x + y + 1)^{2}  = 11 + 6 \sqrt{2}  \\ (x + y + 1) ^{2}  = 2 + 9 + 2.3 \sqrt{2}  \\ (x + y + 1)^{2}  = (3 +  \sqrt{2} ) ^{2}  \\  \sqrt{(x + y + 1)^{2} }  =  \sqrt{(3 +  \sqrt{2} } )^{2}  \\  \\  |x + y + 1|  = 3 +  \sqrt{2}  \\  \\ mario \: s.e


Lukyo: Obrigado! :-)
barborasivakova510: ahoj:-)
Perguntas similares