Respostas
1)
x² + x - 12 = 0
a= 1; b = 1; c = -12
Δ = b² - 4ac
Δ = 1² - 4 . 1 . (-12)
Δ = 1 + 48
Δ = 49
x = (-b ± √Δ)/2a
x = ( - 1 ± √49)/2 . 1
x = (-1 ± 7)/2
x' = (-1 + 7)/2
x' = (6)/2
x' = 3
x'' = (-1 - 7)/ 2
x = -8/ 2
x'' = -4
S = {(-4, 3)}
Alternativa D.
2)
x² - 3x - 10 = 0
a= 1; b = -3; c = -10
Δ = b² - 4ac
Δ = (-3)² - 4 . 1 . (-10)
Δ = 9 + 40
Δ = 49
x = (-b ± √Δ)/2a
x = ( - (-3) ± √49)/2 . 1
x = (3 ± 7)/2
x' = (3 + 7)/2
x' = (10)/2
x' = 5
x'' = (3 - 7)/ 2
x = -4/ 2
x'' = -2
S = {(-2, 5)}
Alternativa A.
3)
-25x² - 10x - 1 = 0
a= -25; b = -10; c = -1
Δ = b² - 4ac
Δ = (-10)² - 4 . (-25) . (-1)
Δ = 100 - 100
Δ = 0
x = (-b ± √Δ)/2a
x = ( - (-10) ± √0)/2 . (-25)
x = (10 ± 0)/-50
x' = (10 + 0)/-50
x' = (10)/-50
x' = 1/-5
x'' = (10 - 0)/ -50
x = 10/ -50
x'' = -1/5
S = {(-1/5, -1/5)}
4)
2x² - 8x - 10 = 0
a= 2; b = -8; c = -10
Δ = b² - 4ac
Δ = (-8)² - 4 . 2 . (-10)
Δ = 64 + 80
Δ = 144
x = (-b ± √Δ)/2a
x = ( - (-8) ± √144)/2 . 2
x = (8 ± 12)/4
x' = (8 + 12)/4
x' = (20)/4
x' = 5
x'' = (8 - 12)/ 4
x = -4/ 4
x'' = -1
S = {(-1, 5)}
Alternativa C.
5)
3x² - 3 = 2x² + 2x
3x² - 2x² - 2x - 3 = 0
x² - 2x - 3 = 0
a= 1; b = -2; c = -3
Δ = b² - 4ac
Δ = (-2)² - 4 . 1 . (-3)
Δ = 4 + 12
Δ = 16
x = (-b ± √Δ)/2a
x = ( - (-2) ± √16)/2 . 1
x = (2 ± 4)/2
x' = (2 + 4)/2
x' = (6)/2
x' = 3
x'' = (2 - 4)/ 2
x = -2/ 2
x'' = -1
S = {(-1, 3)}
Alternativa C.
6)
2x- 4 = 0
2x = 4
x = 4/2
x = 2
ou
x + 3 = 0
x = - 3
Alternativa D.
7)
a = 1; b = -1; c = 6
x' + x" = -b/a
x' + x" = -(-1)/1
x' + x" = 1/1
x' + x" = 1
siga fundamentalmatematica no inst@gr@m
8)
a)
x(x + 9) + (x + 9) = 0
x² + 9x + x + 9 = 0
x² + 10x + 9 = 0
a= 1; b = 10; c = 9
Δ = b² - 4ac
Δ = 10² - 4 . 1 . 9
Δ = 100 - 36
Δ = 64
x = (-b ± √Δ)/2a
x = ( - 10 ± √64)/2 . 1
x = (-10 ± 8)/2
x' = (-10 + 8)/2
x' = (-2)/2
x' = -1
x'' = (-10 - 8)/ 2
x = -18/ 2
x'' = -9
S = {(-9, -1)}
b)
3x - 2 + 7x(3x - 2) = 0
3x - 2 + 21x² - 14x = 0
21x² - 11x - 2 = 0
a= 21; b = -11; c = -2
Δ = b² - 4ac
Δ = (-11)² - 4 . 21 . (-2)
Δ = 121 + 168
Δ = 289
x = (-b ± √Δ)/2a
x = ( - (-11) ± √289)/2 . 21
x = (11 ± 17)/42
x' = (11 + 17)/42
x' = (28)/42
x' = 2/3
x'' = (11 - 17)/ 42
x = -6/ 42
x'' = -1/7
S = {(-1/7, 2/3)}
c)
(2x + 1)(x - 1) = 2
2x² - 2x + x - 1 - 2 = 0
2x² - x - 3 = 0
a= 2; b = -1; c = -3
Δ = b² - 4ac
Δ = (-1)² - 4 . 2 . (-3)
Δ = 1 + 24
Δ = 25
x = (-b ± √Δ)/2a
x = ( - (-1) ± √25)/2 . 2
x = (1 ± 5)/4
x' = (1 + 5)/4
x' = (6)/4
x' = 3/2
x'' = (1 - 5)/ 4
x = -4/ 4
x'' = -1
S = {(-1, 3/2)}