• Matéria: Matemática
  • Autor: Isótopo
  • Perguntado 9 anos atrás

Qual seria a fórmula?

Anexos:

Respostas

respondido por: KarineFernandes83
1
Fórmula que relaciona diagonais para com lado de polígonos regulares convexos:

d = n.(n - 3)
     -------------
            2

*Solucionando a questão indicada:
d (número de diagonais) = 35
n = ?


d = n.(n - 3)
     -------------
            2

35 = n.(n - 3)
     -------------
            2

*Aplicando multiplicação em "cruz":
n² - 3n = 70
n² - 3n - 70 = 0

Δ = (-3). -4. 1. -70
Δ = 9 + 280 
Δ = 289

n = -(-3) ± √289
      ----------------
            2. 1

n = 3 ± 17
     -----------
          2

n1 = 10
n2 = -7 (Não convém polígono com lado negativo).

Logo, o polígono em questão possui 10 lados, é um decágono!
Alternativa C
respondido por: Anônimo
1
Para encontrar o numero de diagonais de um poligono nos usamos a seguinte formula:

D=\frac{n(n-3)}{2}

Onde:

D= numero de diagonais
n= numero de lados do poligono

35=\frac{n(n-3)}{2}

70=n(n-3)

70=n^2-3n

n^2-3n-70=0

(n+7)(n-10)=0

n+7=0\ ou\ n-10=0

n=-7\ ou\ n=10

Como nao existe poligono com um numero negativo de lados sabemos que o poligono tem 10 lados.
Perguntas similares