• Matéria: Física
  • Autor: thaymonyque
  • Perguntado 3 anos atrás

Com a finalidade de estudar as propriedades da reflexão
da luz, um estudante representa seus elementos em um par
de eixos coordenados. Assim, um espelho E é representado
pela reta de equação y = 6; a fonte luminosa é um ponto L,
de coordenadas (0,2); a luz, emitida a partir de L, deve
iluminar um ponto A, de coordenadas (12,4). Para que isso
aconteça, a luz deve ser direcionada para um ponto M,
simétrico de A, em relação ao espelho, de modo a atingir o
espelho no ponto P.
Determinar:

- Coordenadas do ponto M

- Coordenadas do ponto P

Anexos:

Respostas

respondido por: pedroarthurcksp4potv
1

Explicação:

Por simetria, pode-se observar que assim como o ponto A está a uma coordenada y = 6-2, o ponto y de M deve estar a uma coordenada y = 6+2 as coordenadas do ponto M.

Logo as coordenadas do ponto M são (12,8).

A reta LM pode ser descrita por suas duas coordenadas.

(0,2) e (12,8), logo temos

y = ax + b

2 = b

8 = 12a + b

12a = 8-2

a = 6/12 = 0,5

Logo a equação da reta é:

y = 0,5x + 2

o ponto que intercepta a reta do espelho é o que nos interessa, logo, fazendo y = 6, temos que x = 6-2/0,5 = 8

logo as coordenadas do ponto P = (8,6)

respondido por: jlbellip5dxpx
1

Resposta:

Explicação:

Se os pontos A e M são simétricos em relação à reta y = 6 significa que se o ponto A está 2 abaixo da reta, M deve estar 2 acima da reta.

M(12,8)

As coordenadas do ponto P podem ser obtidas por semelhança de triângulos

\frac{4}{x} =\frac{2}{12-x} \\\\2*x = 4*(12-x)\\\\2x=48-4x\\\\2x+4x=48\\\\6x=48\\\\x=\frac{48}{6} \\\\x = 8

Coordenadas do ponto P(8,6)

Anexos:
Perguntas similares