• Matéria: Matemática
  • Autor: guifla790
  • Perguntado 3 anos atrás

1) determine a fração geratriz de cada dizima periódica.

a) 4,182182...
B) 25,1818...
C) 1,333...​

Respostas

respondido por: guaraciferreiraap
1

Resposta:

Explicação passo a passo:

Solução:

a)  4,182182182... = 4 + 182/999 = 4.999+182/999 = 4178/999

b)  25,181818... = 25 + 18/99 = 25.99+18/99 = 2493/99 = 277/11

c)  1,3333... = 1 + 3/9 = 1.9+3/9 = 12/9 = 4/3

respondido por: psychorochi777
0

Resposta:

a)4178/999

b)2493/99
c)10/9

Explicação passo a passo: formula;
PI: parte inteira(tudo que vem antes da vírgula)

AP: ante período(os números que vem antes da sequencia repetitiva de números iguais)
P: período(os números que se repetem infinitamente)

PI,PA,P-PI,PA
    sobre

para cada algarismo do período, coloque 1 nove
para cada ante período, coloque um 0

na formula, você não vai multiplicar os números que estão próximos, apenas colocá-los em sequencia e subtrair com a outra parte da operação. Se não houver parte inteira ou ante período NÃO coloque zero.

Perguntas similares