• Matéria: Matemática
  • Autor: raquel2026ro
  • Perguntado 3 anos atrás

O Teorema Fundamental do Cálculo estabelece a importante conexão entre o Cálculo Diferencial e o Cálculo Integral. O primeiro surgiu a partir do problema de se determinar a reta tangente a uma curva em um ponto, enquanto o segundo surgiu a partir do problema de se encontrar a área de uma figura plana. Aparentemente, mas apenas aparentemente, entre os dois problemas parece não existir nenhuma relação. O Teorema Fundamental permitia encontrar a área de uma figura plana de uma forma muito fácil, sem a necessidade de se calcular a soma de áreas de um número indefinidamente grande de retângulos, mas sim usando a antiderivada da função envolvida. Fonte:Disponível em; Acesso.28.Ago.2018. Neste contexto, considere o gráfico a seguir e julgue as afirmações c Fonte:Ribeiro,2018. I - No intervalo left square bracket a comma b right square bracket tem-se f left parenthesis x right parenthesis greater or equal than 0 II – Para cálculo da área de uma função f left parenthesis x right parenthesis greater or equal than 0 no intervalo left square bracket a comma b right square bracketbasta a integral integral subscript a superscript b f left parenthesis x right parenthesis d x . III – A função f left parenthesis x right parenthesis não é contínua em f left parenthesis x right parenthesis space less or equal than 0 comma space for all x element of left square bracket a comma space b right square bracket. É correto apenas o que se afirma em: Escolha uma: a. I. b. II. c. III. d. I e II. e. II e III.

Anexos:

Respostas

respondido por: herissonmendes
2

a. I - Errado

c. III - Errado

d. I e II - Errado

respondido por: otaviosetter
0

Resposta: APENAS o II  (corrigido pelo AVA)

a. II. Correto

b. III.

c. I.

d. I e  II.

e. II e III.

Explicação passo a passo:

Perguntas similares