Dadas as funções reais f(x) e g(x) definidas por: f(x)=x²-x-20 g(x) = 1 - 2x. Indique a alternativa que corresponde aos resultados de g(f(-2)) e f(g(-2))
Respostas
✅ Após resolver os cálculos, concluímos que os valores numéricos das referidas composição de funções são, respetivamente:
\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf g(f(-2)) = 29\:\:\:e\:\:\:f(g(-2)) = 0\:\:\:}}\end{gathered}$}
g(f(−2))=29ef(g(−2))=0
Sejam as funções polinomiais:
\begin{gathered}\Large\begin{cases} f(x) = x^{2} - x - 20\\g(x) = 1 - 2x\\ g(f(-2)) = \:?\\f(g(-2)) = \:?\end{cases}\end{gathered}
⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
f(x)=x
2
−x−20
g(x)=1−2x
g(f(−2))=?
f(g(−2))=?
Organizando as equações, temos:
\begin{gathered}\Large\begin{cases} f(x) = x^{2} - x - 20\\g(x) = -2x + 1\\g(f(-2)) = \:?\\f(g(-2)) = \:?\end{cases}\end{gathered}
⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
f(x)=x
2
−x−20
g(x)=−2x+1
g(f(−2))=?
f(g(−2))=?
Então, temos:
Calculando g(f(-2)):
\Large\displaystyle\text{$\begin{gathered} g(f(-2)) = -2[f(-2)] + 1\end{gathered}$}
g(f(−2))=−2[f(−2)]+1
\Large\displaystyle\text{$\begin{gathered} = -2[(-2)^{2} - (-2) - 20] + 1\end{gathered}$}
=−2[(−2)
2
−(−2)−20]+1
\Large\displaystyle\text{$\begin{gathered} = -2[4 + 2 - 20] + 1\end{gathered}$}
=−2[4+2−20]+1
\Large\displaystyle\text{$\begin{gathered} = -2[-14] + 1\end{gathered}$}
=−2[−14]+1
\Large\displaystyle\text{$\begin{gathered} = 28 + 1\end{gathered}$}
=28+1
\Large\displaystyle\text{$\begin{gathered} = 29\end{gathered}$}
=29
\Large\displaystyle\text{$\begin{gathered} \therefore\:\:\:g(f(-2)) = 29\end{gathered}$}
∴g(f(−2))=29
Calculando f(g(-2)):
\Large\displaystyle\text{$\begin{gathered} f(g(-2)) = (g(-2))^{2} - (g(-2)) - 20\end{gathered}$}
f(g(−2))=(g(−2))
2
−(g(−2))−20
\large\displaystyle\text{$\begin{gathered} = (-2\cdot(-2) + 1)^{2} - (-2\cdot(-2) + 1) - 20\end{gathered}$}
=(−2⋅(−2)+1)
2
−(−2⋅(−2)+1)−20
\Large\displaystyle\text{$\begin{gathered} = (4 + 1)^{2} - (4 + 1) - 20\end{gathered}$}
=(4+1)
2
−(4+1)−20
\Large\displaystyle\text{$\begin{gathered} = 5^{2} - 5 - 20\end{gathered}$}
=5
2
−5−20
\Large\displaystyle\text{$\begin{gathered} = 25 - 5 - 20\end{gathered}$}
=25−5−20
\Large\displaystyle\text{$\begin{gathered} = 0\end{gathered}$}
=0
\Large\displaystyle\text{$\begin{gathered} \therefore\:\:\:f(g(-2)) = 0\end{gathered}$}
∴f(g(−2))=0
\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}
Bonsestudos!!Boasorte!!