• Matéria: Matemática
  • Autor: Math739
  • Perguntado 3 anos atrás

Resolver a seguinte expressão:
~
\mathsf{\left[\left(\dfrac{2}{3}-\dfrac{1}{6}\left)^2+\dfrac{1}{2}\right]~:~\left(\dfrac{3}{4}+\dfrac{1}{2}-1\right)}


Math739: deu erro no LaTeX

Respostas

respondido por: guihts2205
8

Resposta:

3

Explicação passo a passo:

Primeiro, precisamos resolver as expressões dentro dos parênteses. Temos:

\left[\left(\dfrac{2}{3}-\dfrac{1}{6}\right)^2+\dfrac{1}{2}\right]:\left(\dfrac{3}{4}+\dfrac{1}{2}-1\right) \\ \\ =\left[\left(\dfrac{2\cdot2-1\cdot1}{6}\right)^2+\dfrac{1}{2}\right]:\left(\dfrac{3\cdot1+1\cdot2-1\cdot4}{4}\right) \\ \\ =\left[\left(\dfrac{4-1}{6}\right)^2+\dfrac{1}{2}\right]:\left(\dfrac{3+2-4}{4}\right) \\ \\ =\left[\left(\dfrac{3}{6}\right)^2+\dfrac{1}{2}\right]:\left(\dfrac{1}{4}\right) \\ \\ =\left[\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}\right]:\left(\dfrac{1}{4}\right)

=\left[\dfrac{1^2}{2^2}+\dfrac{1}{2}\right]:\left(\dfrac{1}{4}\right) \\ \\ =\left[\dfrac{1}{4}+\dfrac{1}{2}\right]:\left(\dfrac{1}{4}\right) \\ \\ =\left[\dfrac{1\cdot1+1\cdot2}{4}\right]:\left(\dfrac{1}{4}\right) \\ \\ =\left[\dfrac{1+2}{4}\right]:\left(\dfrac{1}{4}\right) \\ \\ =\left[\dfrac{3}{4}\right]:\left(\dfrac{1}{4}\right) \\ \\ =\left[\dfrac{3}{4}\right]\cdot\left(\dfrac{4}{1}\right)=\dfrac{3\cdot4}{4\cdot1} \\ \\ =\dfrac{3}{1}=3


Kin07: Excelente no Látex.
respondido por: auditsys
12

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\sf{\left[\left(\dfrac{2}{3} - \dfrac{1}{6}\right)^2 + \dfrac{1}{2}\right]\::\:\left(\dfrac{3}{4} + \dfrac{1}{2} - 1\right)}

\sf{\left[\left(\dfrac{4 - 1}{6}\right)^2 + \dfrac{1}{2}\right]\::\:\left(\dfrac{3}{4} + \dfrac{1}{2} - 1\right)}

\sf{\left[\left(\dfrac{3}{6}\right)^2 + \dfrac{1}{2}\right]\::\:\left(\dfrac{3}{4} + \dfrac{1}{2} - 1\right)}

\sf{\left[\left(\dfrac{1}{2}\right)^2 + \dfrac{1}{2}\right]\::\:\left(\dfrac{3}{4} + \dfrac{1}{2} - 1\right)}

\sf{\left[\dfrac{1}{4} + \dfrac{1}{2}\right]\::\:\left(\dfrac{3}{4} + \dfrac{1}{2} - 1\right)}

\sf{\left[\dfrac{1 + 2}{4}\right]\::\:\left(\dfrac{3}{4} + \dfrac{1}{2} - 1\right)}

\sf{\left[\dfrac{3}{4}\right]\::\:\left(\dfrac{3}{4} + \dfrac{1}{2} - 1\right)}

\sf{\left[\dfrac{3}{4}\right]\::\:\left(\dfrac{3 + 2 - 4}{4}\right)}

\sf{\left[\dfrac{3}{4}\right]\::\:\left[\dfrac{1}{4}\right]}

\sf{\left[\dfrac{3}{4}\right]\:\times\:\left[\dfrac{4}{1}\right] = \dfrac{12}{4}}

\boxed{\boxed{\boxed{\sf{3}}}}

Perguntas similares