Respostas
Explicação passo-a-passo:
{[(8 × 4 +3) ÷ 7 + ( 3 +15 ÷ 5 ) ×3 ] ×2 - ( 19 - 7 ) ÷ 6 } × 2 + 12
{[(32+3):7+(3+3).3].2-(19-7):6}.2+12
{[35:7+6.3].2-12:6}.2+12
{[5+18].2-2}.2+12
{23.2-2}.2+12
{46-2}.2+12
44.2+12
88+12
100
Resposta:
O resultado será 100.
Explicação passo a passo:
Primeiro resolvemos os parênteses () :
{[(8 × 4 + 3) ÷ 7 + ( 3 + 15 ÷ 5 ) ×3 ] ×2 - ( 19 - 7 ) ÷ 6 } × 2 + 12
(8 x 4 + 3) (resolvemos primeiro a multiplicação)
32 + 3 = 35.
(3 + 15 ÷ 5) (resolvemos primeiro a divisão)
3 + 3 = 6.
19 - 7 = 12.
Por enquanto, a expressão está assim (em negrito se encontra nossos novos resultados):
{[35 ÷ 7 + 6 × 3] ×2 - 12 ÷ 6 } × 2 + 12
Agora, resolveremos os colchetes [].
[35 ÷ 7 + 6 × 3] (A ordem de resolução será: 1º multiplicação, 2º divisão. 3º soma).
6 x 3 = 18;
35 ÷ 7 = 5;
5 + 18 = 23.
Agora, nossa expressão está assim (em negrito o nosso novo resultado após resolver o colchete):
{23 × 2 - 12 ÷ 6 } × 2 + 12
Agora, resolveremos as chaves {}.
{23 × 2 - 12 ÷ 6 } (A ordem de resolução será: 1º multiplicação, 2º divisão. 3º subtração.)
23 x 2 = 46;
12 ÷ 6 = 2;
46 - 2 = 44.
Agora, nossa expressão está sem parênteses, colchetes, ou chaves (onde novamente a parte em negrito é o resultado da nossa resolução):
44 × 2 + 12.
Então, resolvemos primeiro a multiplicação e depois a soma:
44 x 2 = 88
88 + 12 = 100.
E obtemos 100 como o resultado final da expressão.