Respostas
Explicação passo-a-passo:
1)
x² + x - 42 = 0
a= 1; b = 1; c = -42
Δ = b² - 4ac
Δ = 1² - 4 . 1 . (-42)
Δ = 1 + 168
Δ = 169
x = (-b ± √Δ)/2a
x = ( - 1 ± √169)/2 . 1
x = (-1 ± 13)/2
x' = (-1 + 13)/2
x' = (12)/2
x' = 6
x'' = (-1 - 13)/ 2
x'' = -14/ 2
x'' = -7
2)
x² - 5x + 6 = 0
a= 1; b = -5; c = 6
Δ = b² - 4ac
Δ = (-5)² - 4 . 1 . 6
Δ = 25 - 24
Δ = 1
x = (-b ± √Δ)/2a
x = ( - (-5) ± √1)/2 . 1
x = (5 ± 1)/2
x' = (5 + 1)/2
x' = (6)/2
x' = 3
x'' = (5 - 1)/ 2
x'' = 4/ 2
x'' = 2
3)
x² - 8x + 12 = 0
a= 1; b = -8; c = 12
Δ = b² - 4ac
Δ = (-8)² - 4 . 1 . 12
Δ = 64 - 48
Δ = 16
x = (-b ± √Δ)/2a
x = ( - (-8) ± √16)/2 . 1
x = (8 ± 4)/2
x' = (8 + 4)/2
x' = (12)/2
x' = 6
x'' = (8 - 4)/ 2
x'' = 4/ 2
x'' = 2
S = {(2, 6)}
Raízes: 2 e 6
4)
x² + 7x + 12 = 0
a= 1; b = 7; c = 12
Δ = b² - 4ac
Δ = 7² - 4 . 1 . 12
Δ = 49 - 48
Δ = 1
x = (-b ± √Δ)/2a
x = ( - 7 ± √1)/2 . 1
x = (-7 ± 1)/2
x' = (-7 + 1)/2
x' = (-6)/2
x' = -3
x'' = (-7 - 1)/ 2
x'' = -8/ 2
x'' = -4
S = {(-4, -3)}
Raízes: -4 e -3