• Matéria: Matemática
  • Autor: lauannecaren
  • Perguntado 3 anos atrás

efetue o quadrado da soma e da diferença:
a) (x+4y)²
b) (3a+1/2)²
c) (6-n)²
d) (x-y)²
URGENTE​

Respostas

respondido por: simonesantosaraujo91
1

 \red{a)(x + 4y) {}^{2} } \\  \red{(x + 4y) {}^{2}} \\  \red{x {}^{2} + 2x \times 4y + (4y) {}^{2}} \\  \red{2x \times 4y } \\  \red{8xy} \\  \red{x {}^{2} + 2x \times 4y(4y) {}^{2}} \\  \red{x {}^{2} + 8xy + (4y) {}^{2}} \\  \red{x {}^{2}  + 2x \times 4y + (4y) {}^{2}} \\  \red{(4y {}^{2})} \\ \red{4 {}^{2}y {}^{2}} \\  \red{16y {}^{2}} \\  \red{x {}^{2} + 2x \times 4y + (4y) {}^{2}} \\  \red{x {}^{2} + 8xy + 16y {}^{2}} \\  \blue{resposta} \\  \red{x {}^{2} + 8xy + 16y {}^{2}}

Aplicação Passo a Passo

 \red{b)(3a +  \frac{1}{2}) {}^{2}} \\  \red{(3a +  \frac{1}{2}) {}^{2}} \\  \red{(3a) {}^{2} + 2 \times 3a \times  \frac{1}{2} + ( \frac{1}{2}) {}^{2}} \\  \red{3a ) {}^{2}} \\  \red{3 {}^{2}a {}^{2}} \\ \red {9a {}^{2} } \\  \red{(3a) {}^{2} + 2 \times 3a \times  \frac{1}{2} + ( \frac{1}{2}) {}^{2}}  \\  \red{9a {}^{2} + 2 \times 3a \times  \frac{1}{2} + ( \frac{1}{2}){}^{2} } \\

explicação passo a passo

 \orange{continuacao \: da \: b} \\  \red{ (3a) {}^{2} + 2 \times 3a \times  \frac{1}{2} + ( \frac{1}{2}) {}^{2}} \\  \red{2 \times 3a \times  \frac{1}{2}} \\  \red{3a} \\  \red{(3a) {}^{2} + 2 \times 3a \times  \frac{1}{2} + ( \frac{1}{2} {}^{2}} \\  \red{9a {}^{2} + 3a + ( \frac{1}{2}){}^{2} } \\  \red{(3a) {}^{2} + 2 \times 3a \times  \frac{1}{2} + ( \frac{1}{2}) {}^{2}} \\  \red{( \frac{1}{2}) {}^{2}} \\ \\   \red{ \frac{1 {}^{2} }{2 {}^{2}}}  \\ \\  \red{ \frac{1}{2 {}^{2}}} \\ \\  \red{ \frac{1 {}^{2} }{2 {}^{2} } }  \\ \\  \red{ \frac{1}{4}} \\  \red{(3a) {}^{2} + 2 \times 3a \times  \frac{1}{2} + ( \frac{1}{2}) {}^{2}}\\  \red{9a {}^{2} + 3a +  \frac{1}{4}} \\  \green{resposta}  \\ \pink{9a {}^{2} + 3a + \frac{1}{2} }

_________________________________

 \red{c)(6 - n) {}^{2}} \\  \red{(6 - n) {}^{2}}  \\  \red{6 {}^{2} - 2 \times 6n + n {}^{2}} \\\red{36 - 2 \times 6n + n {}^{2}}  \\\red{6 {}^{2} - 2 \times 6n + n {}^{2} } \\  \red{36 - 12n + n {}^{2} } \\  \red{(6 - n) {}^{2} } \\  \red{36 - 12n + n {}^{2} } \\  \red{n {}^{2} - 12n + 36} \\ \green{resposta} \\  \pink{n {}^{2} + 12n + 36 }

 \red{d)(x - y) {}^{2} } \\  \red{(x - y) {}^{2}} \\  \red{x {}^{2} - 2xy + y {}^{2}} \\  \green{resposta} \\  \pink{x {^{2} - 2xy + y {}^{2}}}  \\ \purple{espero \: ter \: te \: ajudado}

.

Perguntas similares