• Matéria: Matemática
  • Autor: kkkeaemen15
  • Perguntado 3 anos atrás

Reduza à forma normal as seguintes equações do 2.° grau:

Resolver as seguintes equações do 2.° grau, sendo U = R:

A) x2 - 7 = 10x + 4
B) 2x2 = 5x - 8
C) 3x2 - x = 2x2 + 2
D) x2 + 4x = 1 - x12
E) x2 - x = x - 1
F) 10x2 - 1 = 3x
G) x2 = 3x + 4
H) 9x2 - 5x = x - 1​

Respostas

respondido por: Makaveli1996
1

a) \\ x {}^{2}  - 7 = 10x + 4 \\ x {}^{2}  -  7 - 10x - 4 = 0 \\ x {}^{2}  - 10x - 11 = 0 \\ \boxed{a = 1 \:,  \: b =  - 10 \: , \: c =  - 11} \\ x =  \frac{ - b  ±\sqrt{b {}^{2}  - 4ac} }{2a}  \\ x =  \frac{ - ( - 10)±  \sqrt{( - 10) {}^{2}  - 4 \: . \: 1 \: . \: ( - 11)} }{2 \: . \: 1}  \\ x =  \frac{10±  \sqrt{100 + 44} }{2}  \\ x =  \frac{10±  \sqrt{144} }{2}  \\ x =  \frac{10± 12}{2}  \\ x =  \frac{10 + 12}{2}  =  \frac{22}{2}  = \boxed{\boxed{ \boxed{11}}} \\ x =  \frac{10 - 12}{2}  =  \frac{ - 2}{2}  =  \boxed{\boxed{ \boxed{ - 1}}} \\

b) \\ 2x {}^{2}  = 5x - 8 \\ 2x {}^{2}  - 5x - 8 = 0 \\ \boxed{a = 2 \:  ,\: b =  - 5 \: , \: c =  - 8} \\ x =  \frac{ - b  ±\sqrt{b {}^{2} - 4ac } }{2a}  \\ x =  \frac{ - ( - 5) ±\sqrt{( - 5) {}^{2} - 4 \: . \: 2 \: . \:  8} }{2 \: . \: 2}  \\ x =  \frac{5  ± \sqrt{25 - 64} }{4}  \\ x =  \frac{5 ± \sqrt{ - 39} }{4}  \\ \boxed{\boxed{\boxed{x∉ℝ}}} \\

c) \\ 3x {}^{2}  - x = 2x {}^{2}  + 2 \\ 3x {}^{2}  - x - 2x {}^{2}  - 2 = 0 \\ x {}^{2}  - x - 2 = 0 \\ \boxed{a = 1 \:  ,\: b =  - 1 \:  ,\: c =  - 2} \\ x =  \frac{ - b  ±\sqrt{b {}^{2}  - 4ac} }{2a}  \\ x =  \frac{ - ( - 1)±  \sqrt{( - 1) {}^{2}  - 4 \: . \: 1 \: . \: ( - 2)} }{2 \: . \: 1}  \\ x =  \frac{1 ±\sqrt{1 + 8} }{2}   \\ x =  \frac{1   ±\sqrt{9} }{2}  \\ x =  \frac{1  ±3}{2}  =  \\ x =  \frac{1 + 3}{2}  =  \frac{4}{2}  = \boxed{\boxed{\boxed{2}}} \\ x =  \frac{1 - 3}{2}  =  \frac{ - 2}{2}  = \boxed{\boxed{\boxed{ - 1}}} \\

d) \\ x {}^{2}  + 4x = 1 - x + 12 \\ x {}^{2}  + 4x - 13 + x = 0 \\ x {}^{2}  + 5x - 13 = 0 \\ \boxed{a = 1 \:,  \: b = 5 \: , \: c =  - 13} \\ x =  \frac{ - b  ± \sqrt{b {}^{2} - 4ac } }{2a}  \\ x =  \frac{ - 5   ±\sqrt{5 {}^{2}  - 4 \: . \: 1 \: . \: ( - 13)} }{2 \: . \: 1}  \\ x =  \frac{ - 5 ±\sqrt{25 - 52} }{2}  \\ \boxed{\boxed{\boxed{x =  \frac{ - 5±   \sqrt{77} }{2} }}} \\

e) \\ x {}^{2}  - x = x - 1 \\ x {}^{2}  - x - x + 1 = 0 \\ x {}^{2}  - 2x + 1 = 0 \\ \boxed{a = 1 \: , \: b =  - 2 \:,  \: c = 1} \\ x =  \frac{ - b ± \sqrt{b {}^{2} - 4ac } }{2a}  \\ x =  \frac{ - ( - 2)  ±\sqrt{( - 2) {}^{2}  - 4 \: . \: 1 \: . \: 1} }{2 \: . \: 1}  \\  x=  \frac{ 2 ± \sqrt{4 - 4} }{2}  \\ x =  \frac{2  ±\sqrt{0} }{2}  \\ x =  \frac{2  ±0}{2}  \\ x =  \frac{2}{2}  \\ \boxed{\boxed{\boxed{x = 1}}} \\

f) \\ 10x {}^{2}  - 1 = 3x \\ 10x {}^{2}  - 3x - 1 = 0 \\ \boxed{a = 10 \:  ,\: b =  - 3 \: , \: c = -  1} \\ x =  \frac{ - b±   \sqrt{b {}^{2}  - 4ac} }{2a}  \\ x =  \frac{ - ( - 3)  ±\sqrt{( - 3) {}^{2}  - 4 \: . \: 10 \: . \: ( - 1)} }{2 \: . \: 10}  \\ x =  \frac{3  ± \sqrt{9 + 40} }{20}  \\ x =  \frac{3   ±\sqrt{49} }{20}  \\ x =  \frac{3±  7}{20}  \\ x =  \frac{3 + 7}{20}  =  \frac{10}{20}  = \boxed{\boxed{\boxed{ \frac{1}{2} }}} \\ x =  \frac{3 - 7}{20}  =  \frac{ - 4}{20}  = \boxed{\boxed{\boxed{ -  \frac{1}{5} }}} \\

g) \\ x {}^{2}  = 3x + 4 \\ x {}^{2}  - 3x - 4 = 0 \\ \boxed{a = 1 \: , \: b =  - 3 \:  ,\: c =  - 4} \\ x =  \frac{ - b ±\sqrt{b {}^{2}  - 4ac} }{2a}  \\ x =  \frac{ - ( - 3)  ± \sqrt{( - 3) {}^{2}  - 4 \: . \: 1 \: . \: ( - 4)} }{2 \: . \: 1}  \\ x =  \frac{3  ±\sqrt{9 + 16} }{2}  \\ x =  \frac{3 ± \sqrt{25} }{2}  \\ x =  \frac{3 ± \sqrt{5} }{2}  \\ x =  \frac{3 + 5 }{2}  =  \frac{8}{2}  = \boxed{\boxed{\boxed{4}}} \\ x =  \frac{3 - 5}{2}  =  \frac{ - 2}{2}  = \boxed{\boxed{\boxed{ - 1}}} \\

h) \\ 9x {}^{2}  - 5x = x - 1 \\ 9x {}^{2}  - 5x - x  + 1 = 0 \\ 9x {}^{2}  - 6x + 1 = 0 \\ \boxed{a = 9  \: , \: b =  - 6 \:  ,\: c = 1} \\ x =  \frac{ - b± \sqrt{b {}^{2}  - 4ac} }{2a}  \\ x =  \frac{ - ( - 6)   ±\sqrt{( - 6) {}^{2}  - 4 \: . \: 9  \: . \: 1} }{2 \: . \: 9}  \\ x =  \frac{6 ±\sqrt{36 - 36} }{18}  \\ x =  \frac{6 ± \sqrt{0} }{18}  \\ x =  \frac{6±  0}{18}  \\ x =  \frac{6}{18}  \\ \boxed{\boxed{\boxed{x =  \frac{1}{3} }}} \\

atte. yrz

Perguntas similares