• Matéria: Matemática
  • Autor: santoskawane456
  • Perguntado 3 anos atrás

Determine a equação geral da reta que passa pelos pontos (0, - 3) e (4, 3).​

Respostas

respondido por: solkarped
4

✅ Após resolver os cálculos, concluímos que a equação geral da reta é:

          \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf r: - 3x + 2y+ 6 = 0\:\:\:}}\end{gathered}$}

Sejam os pontos:

                 \Large\begin{cases} A(0, -3)\\B(4, 3)\end{cases}

A equação geral  de uma reta no plano cartesiano pode ser escrita na forma:

        \Large\displaystyle\text{$\begin{gathered} Ax+ By +C = 0,\:\:\textrm{com}\:A\neq0\:e\:B\neq0\end{gathered}$}

Para determinar a equação geral da reta no plano cartesiano, devemos fazer:

      \Large\displaystyle\text{$\begin{gathered} y - y_{A} = m_{r}\cdot(x - x_{A})\end{gathered}$}

      \Large\displaystyle\text{$\begin{gathered} y - y_{A} = \tan\theta\cdot(x- x_{A})\end{gathered}$}

      \Large\displaystyle\text{$\begin{gathered} y- y_{A} = \frac{\sin\theta}{\cos\theta}\cdot(x - x_{A})\end{gathered}$}

      \Large\displaystyle\text{$\begin{gathered} y - y_{A} = \frac{y_{B} - y_{A}}{x_{B} - x_{A}}\cdot(x - x_{A})\end{gathered}$}

 \Large\displaystyle\text{$\begin{gathered} y- (-3) = \frac{3 - (-3)}{4 - 0}\cdot(x - 0)\end{gathered}$}

          \Large\displaystyle\text{$\begin{gathered} y + 3 = \frac{3 + 3}{4}\cdot x\end{gathered}$}

          \Large\displaystyle\text{$\begin{gathered} y + 3 = \frac{6}{4}x\end{gathered}$}

          \Large\displaystyle\text{$\begin{gathered} 4(y + 3) = 6x\end{gathered}$}

        \Large\displaystyle\text{$\begin{gathered} 4y + 12 - 6x = 0\end{gathered}$}

    \Large\displaystyle\text{$\begin{gathered} -6x + 4y + 12 = 0\end{gathered}$}

       \Large\displaystyle\text{$\begin{gathered} -3x + 2y + 6 = 0\end{gathered}$}

✅ Portanto, a equação geral da reta é:

    \Large\displaystyle\text{$\begin{gathered} r: -3x + 2y + 6 = 0\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/52501055
  2. https://brainly.com.br/tarefa/52538951
  3. https://brainly.com.br/tarefa/52623814
  4. https://brainly.com.br/tarefa/52698890
  5. https://brainly.com.br/tarefa/22374703
  6. https://brainly.com.br/tarefa/52926823
  7. https://brainly.com.br/tarefa/52938773
  8. https://brainly.com.br/tarefa/53140005
  9. https://brainly.com.br/tarefa/53214613
  10. https://brainly.com.br/tarefa/53214511

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas similares