• Matéria: Matemática
  • Autor: gugaantonio2005
  • Perguntado 3 anos atrás

determine o 9° termo da pg. (405,135,45...)​

Respostas

respondido por: lavinnea
1

Resposta:

P.G(405,135,45...)​

Calcular a razão

a_1=405\\ \\ a_2=135\\ \\ q=\dfrac{135}{405}\\ \\ simplificando\\ \\\boxed{ q=\dfrac{1}{3}}

Podemos notar que a P.G está decrescente

Sendo:

a_n=a_9=?\\ a_1=405\\ n=9\\ \\ q=\dfrac{1}{3}\\ \\ \\ Termo~~geral\\ \\ a_n=a_1.q^{n-1}\\ \\ \\ a_9=405.(\dfrac{1}{3})^{9-1}\\ \\ \\ a_9=405.(\dfrac{1}{3})^8\\ \\ \\ a_9=3^4.5.\dfrac{1}{3^8}\\ \\ a_9=\dfrac{5}{3^4}\\ \\ \\\boxed{ a_9=\dfrac{5}{81}}

respondido por: ewerton197775p7gwlb
1

 >  \: resolucao \\  \\  \geqslant  \: progressao \:  \: geometrica \\  \\ q =  \frac{a2}{a1}  =  \frac{135}{405}  =  \frac{1}{3}  \\  \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\  >  \: o \: nono \: termo \: da \: pg \\  \\ an = a1 \times q {}^{n - 1}  \\ an = 405 \times ( \frac{1}{3} ) {}^{9 - 1}  \\ an = 405 \times ( \frac{1}{3} ) {}^{8}  \\ an = 405 \times  \frac{1}{6561}  \\  \\ an =  \frac{405÷81}{6561÷81}   \\ \\ an =  \frac{5}{81}  \\  \\  \\  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant

Anexos:
Perguntas similares