• Matéria: Matemática
  • Autor: Stefhanietdb3408
  • Perguntado 3 anos atrás

eear 2002 num triangulo abc tem-se ab = 2cm, bac = 30° e acb = 45. a area do triangulo abc é

Respostas

respondido por: jalves26
1

A área do triângulo ABC é:

A = 1 + √3 cm²

         2

Área do triângulo

Utilizando a lei dos senos, podemos obter a medida do lado BC desse triângulo.

   BC   =   AB    

sen 30°   sen 45°

BC =   2  

1/2      √2/2

BC =  4  

1/2      √2

BC = 2√2

1/2      

BC = 2√2·1/2

BC = √2 cm

A soma dos ângulos internos é 180°. Logo:

30° + 45° + B = 180°

75° + B = 180°

B = 105°

Segundo o Teorema das áreas, a área de um triângulo é igual ao semi-produto das medidas de dois lados pelo seno do ângulo formado por esses lados. Logo:

A = 2·√2·sen 105°

              2

A = √2·sen 105°

sen 105° = sen 75°

sen 105° = sen (30° + 45°)

sen 105° = sen 30°·cos 45° + sen 45°·cos 30°

sen 105° = (1/2)·(√2/2) + (√2/2)·(√3/2)

sen 105° = √2/4 + √6/4

A = √2·sen 105°

A = √2·(√2/4 + √6/4)

A = 2/4 + √12/4

A = 2/4 + 2√3/4

A = 1/2 + √3/2

A = 1 + √3

         2

Mais sobre Teorema das Áreas em:

https://brainly.com.br/tarefa/17028311

#SPJ11

Anexos:
Perguntas similares