• Matéria: Matemática
  • Autor: kellyaneaguiar704
  • Perguntado 3 anos atrás

Determine a derivada f'(x)f ′ (x) da função f(x) = -2 x^2+8 x+5f(x)=−2x 2 +8x+5


kellyaneaguiar704: alguém me ajuda por favor
brunosilvagomes: moça, não entendi nada
brunosilvagomes: como vou determina a dervida sem o valor do x
brunosilvagomes: moça me manda uma foto no pv
brunosilvagomes: 69993909905
kellyaneaguiar704: Determine o ponto de máximo da função f(x) = -2 x^2+8 x+5f(x)=−2x
2
+8x+5

(2, 13)(2,13)

(1,5 , -0,25)(1,5,−0,25)

(1,5 , 0,25)(1,5,0,25)

(13, 2)(13,2)

(0 , -3)(0,−3)
brunosilvagomes: voce quer o valor do f? ou graficos?
brunosilvagomes: me manda no wh@ts
brunosilvagomes: a pergunta

Respostas

respondido por: Buckethead1
5

✅ Pela regra de derivação de polinômios, obteremos que a derivada de f será ḟ(x) = -4x + 8

 

☁️ Derivada de uma função: A derivada representa a taxa de variação da função em relação à variável independente.

 \Large \underline{\boxed{\boxed{\qquad\displaystyle\rm \dot{f}(x) = \lim_{\Delta x\to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \qquad}}}

 

ℹ️ Via essa definição conseguimos exprimir algumas regras de derivação. Considere  \rm n,~\mathbb{C} \in \mathbb{R} constantes reais.

   ❐ derivada de polinômios: (

 \large\begin{array}{lr}\rm f(x) = x^{n} \Rightarrow \dot{f}(x) =nx^{n -1}\end{array}

   ❐ derivada da constante vezes função:

 \large\begin{array}{lr}\rm g(x) = \mathbb{C}f(x) \Rightarrow \dot{g}(x) = \mathbb{C}\dot{f}(x) \end{array}

   ❐ derivada da função constante:

 \large\begin{array}{lr}\rm f(x) = \mathbb{C} \Rightarrow \dot{f}(x) = 0 \end{array}

 

✍️ Solução: Já em posse das regras, podemos aplica-las:

 \large\begin{array}{lr}\rm Seja,~ f(x) = -2x^2 + 8x + 5 \\\\\begin{aligned}\rm \dfrac{d}{dx}[f(x)] = \dot{f}(x) &=\rm -2(\dot{x^2}) + 8(\dot{x}) + \dot{5} \\\\&=\rm -2 \cdot 2x + 8 \cdot 1 + 0 \\\\&=\rm -4x + 8 \end{aligned}\\\\\red{\underline{\boxed{\boxed{\rm \therefore\: \dot{f}(x) = -4x + 8 }}}} \\\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\blacksquare\!\blacksquare \end{array}

 

✔️ Resolvido! Essa é a derivada da função polinomial dada.

 

❏ Seção de links para complementar o estudo sobre diferenciação, cálculo:

  • brainly.com.br/tarefa/48098014

\rule{7cm}{0.01mm}\\\texttt{Bons estudos! :D}\\\rule{7cm}{0.01mm}

Anexos:

attard: Excelente resposta amigo!
Buckethead1: Obrigado, attard!!
Perguntas similares