Respostas
Explicação passo a passo:
completando os termos que faltam com zero
6x + 2y -3z = 5 >>>>>>>>>1
5x + 2y + 0z = 23 >>>>>>>>>>>>>>>>>2
8x + 0y -3z = 3 >>>>>>>>>>>>3
calculando >>>>>>>>>>1 e >>>>>>>>>2
6x + 2y - 3z = 5 >>>>>>>>>1 ( vezes - 5)
5x + 2y +0z = 23 >>>>>>>>3 ( vezes 6 )
=======================
- 30x - 10y + 15z = -25
+ 30x + 12y + 0z = 138
=========================
// 2y + 15z =113 >>>>>
2y + 15z = 113 >>>>>>>>>>>>>>>>>>>4
calculando >>>>>2 com a >>>>>>3
5x + 2y + 0z = 23 >>>>>>>>>>>2 ( vezes - 8
8x + 0y - 3z = 3>>>>>>>>>>>>>3 ( vezes 5 )
===============================
- 40x - 16y - 0z = - 184
40x + 0y - 15z = 15
=================================
// - 16y - 15z = - 169 ( - 1 )
16y + 15z = 169 >>>>>>>>>>>>5
calculando >>>>>>4 e >>>>>5
2y + 15 z = 113 >>>>>>>>4 ( vezes -1 )
16y + 15z =169>>>>>>>>5
==================================
- 2y - 15z = - 113
16y + 15z = 169
=============================
14y // =56
y = 56/14 = 4 >>>>>>
substituindo na >>>>>>4 o valor de y por 4
2y + 15z = 113 >>>>>>>>>>4
2( 4 ) + 15z = 113
8 +15z = 113
15z = 113 - 8
15z = 105
z = 105/15 =7 >>>>>
substituindo na >>>>>>>1 os valores de x e z achados temos
6 ( 4 ) + 2y - 3 (7 ) = 5 >>>>>>>>>>>>>1
24 + 2y - 21 = 5
passndo 24 e 21 para segundo membro com sinal trocado
2y = 5 - 24 + 21
+5 - 24 = -19 >>> sinais diferentes diminui dá sinal do maior
-19 + 21 = +2 >>>>>idem
reescrevendo
2y = +2
y = 2/2 = 1 >>>>>>resposta
resposta > 4,1, 7
gabarito errado