• Matéria: Matemática
  • Autor: huntermills
  • Perguntado 3 anos atrás

Dois irmãos observam a torre reta TU em um terreno plano, conforme esquematizado na figura. Os seus ângulos de visão medem \alpha e \beta , sendo tg \alpha = 1/3 e tg \beta = 1/2. O irmão localizado no ponto P está 22 metros mais afastado do pé da torre do que o localizado no ponto Q. Desprezando as alturas dos irmãos, pode-se concluir que a altura da torre, em metros, é igual a:

Respostas

respondido por: thailaraissa1406
1

Resposta:

A altura da torre é igual a 60 metros.

A tangente de um ângulo é a relação entre os catetos do triângulo retângulo. Note na figura que há dois triângulos retângulos: PTU (com relação a α) e QTU (com relação a β).

Podemos então escrever as seguintes equações:

tan(α) = TU/(x+30)

tan(β) = TU/x

Temos então o valor de TU dado por duas equações:

TU = tan(α)(x+30) = tan(β)x

Igualando os valores, temos:

tan(α)(x+30) = tan(β)x

(x+30)/3 = x/2

x/3 + 10 = x/2

x/2 - x/3 = 10

x/6 = 10

x = 60 m

Perguntas similares