If k+ 1,2k-1, 3k + 1 are three consecutive terms of a G.P, find the possible values of the common ratio. (JAMB)
Respostas
respondido por:
0
Resposta:
Olá bom dia!
The ratio (q) of a geometric progression whose elements are
X1, X2, X3,...
is equal to:
q = X2/X1
q = X3/X2
.
.
.
q = Xn / Xn-1
So with the given terms:
(2k - 1) / (k + 1) = (3k + 1) / (2k - 1)
6k² + k + 3k + 1 = 4k² - 2k - 2k + 1
6k² + 4k + 1 = 4k² - 4k + 1
6k² - 4k² + 4k + 4k + 1 - 1 = 0
-2k² + 8k = 0
2k(-k + 8) = 0
k = 0
k = -4
So:
k = 0
0 + 1 , 2(0)-1 , 3(0) + 1
{+1 , -1 , + 1, ...}
Is a g.p with ratio q = -1
k = -4
-4 + 1 , 2(-4)-1 , 3(-4) + 1
{-3 , -9 , -11, ...}
Is not a g.p.
Perguntas similares
3 anos atrás
3 anos atrás
3 anos atrás
5 anos atrás
5 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás