• Matéria: Física
  • Autor: Vandersonac
  • Perguntado 3 anos atrás

Considere as seguintes afirmativas sobre uma esfera maciça não condutora, uniformemente carregada e com linhas de campo elétrico radiais e equidistantes para fora da esfera: I. Em cada ponto, dentro ou fora do espaço, as linhas de campo elétrico que passam por esse ponto devem ter direção radial. Para determinar o campo elétrico no seu interior deve levar em consideração que a qenv = Q = ρv(4/3)πR³. II. Qualquer esfera concêntrica com a esfera maciça é uma superfície gaussiana, porque em todos os seus pontos o campo é perpendicular e com o mesmo módulo devido à simetria. Para a determinação do campo elétrico fora da esfera deve levar em consideração que a qenv = Q = ρv(4/3)πR³. III. A carga volumétrica constante implica na distribuição uniforme de carga em todos os pontos da esfera. Em seu interior o campo elétrico determinado é nulo. IV. O raio r da esfera gaussiana pode ser menor ou maior do que o raio da esfera maciça R, ou seja, ra e rb>R. Em diferentes esferas gaussianas o módulo do campo pode ter diferentes valores, ou seja, depende unicamente de r. Assim podemos afirmar que o campo para ra é igual a [(ρv.R³)/(3εor²)]êr. V. O raio r da esfera gaussiana pode ser determinado para ra e rb>R. Em diferentes esferas gaussianas o módulo do campo pode ter diferentes valores, ou seja, depende unicamente de r. Assim, podemos afirmar que o campo para rb>R, é igual a [(ρv.R³)/(3εor²)]êr. Pode(m) ser considerada(s) verdadeira(s) apenas a(s) afirmativa(s): III e V. I e IV. II. I. II e V.

Respostas

respondido por: danilochacha96
0

Resposta: II e V

Explicação:

Perguntas similares