Respostas
Utilizando as relações de razão de uma PG e do termo geral de uma PG, tem-se que a progressão geométrica dada por (3, 1/3, 1/27, ..., 1/19.683) tem um total de 6000069362 termos
Número de termos de uma Progressão Geométrica (P.G)
Uma progressão geométrica, na matemática, é dada como uma sequência de n termos, dos quais o próximo termo da sequência é a multiplicação do anterior por uma razão.
A razão de uma PG é dada por:
E a equação do termo geral de uma PG é dada por:
Com isso, para o problema da sequência dada, tem-se que:
(3, 1/3, 1/27 , ... , 1/19.683)
Onde o termo an=1/19.683, o termo a1=3 e a razão é calculada pela equação dada.
Portanto, aplicando os dados na equação do termo geral de uma progressão geométrica:
Agora, para isolar n, deve-se usar o logaritmo natural.
Portanto, a PG dada tem 6000069362 termos.
Leia mais sobe progressões geométricas em:
https://brainly.com.br/tarefa/42181366
#SPJ4