• Matéria: Matemática
  • Autor: cidineii
  • Perguntado 3 anos atrás

A área lateral de um cone, quando planificada, é um setor circular de 120º e área 3π cm 2 . Determine o volume e a área total do cone.

Respostas

respondido por: Helvio
4

Volume do cone:

\large \text {$V = \dfrac{2\pi \sqrt{2} }{3}  ~~cm ^3   $}\\\\\\

Área total do cone:

\large \text {$ A_t =4 \pi ~cm^2  $}

                                      \Large\text{$S\acute{o}lidos ~Geom\acute{e}tricos $}

A área do setor circular = S =  3π cm²

O valor de Ф = 120⁰

Encontrar o valor do geratriz  do setor circular.

\large \text {$ S = \dfrac{\theta}{360} ~. \pi ~. ~g^2   $}\\\\\\\large \text {$ 3\pi = \dfrac{120~. \pi ~. ~g^2}{360}    $}\\\\\\\large \text {$ 3\pi = \dfrac{1~. \pi ~. ~g^2}{3}    $}\\\\\\\large \text {$ 3\pi = \dfrac{ \pi ~. ~g^2}{3}  $}\\\\\\\large \text {$ \dfrac{ \pi ~. ~g^2}{3}  = 3\pi  $}\\\\\\\large \text {$  g^2 \pi =  3\pi  ~. ~3 $}\\\\\\\large \text {$  g^2 \pi =  9\pi  $}\\\\\\\large \text {$g^2 =  \dfrac{9\pi }{\pi }    $}

\large \text {$g^2= 9    $}\\\\\large \text {$ g =\sqrt{9}    $}\\\\\large \text {$ g = 3 ~cm   $}

===

Formula da Área lateral do cone pela geratriz, encontrar o valor do raio.

\large \text {$ S_l = \pi ~. r ~. ~g   $}\\\\\\\large \text {$3\pi  = \pi ~. r ~. ~3   $}\\\\\\\large \text {$ \pi ~. r ~. ~g = 3\pi    $}\\\\\\\large \text {$ \pi ~. r ~. ~3 = \dfrac{3\pi }{3\pi }    $}\\\\\\\large \text {$ r  = 1 ~cm   $}

====

Encontrar a altura ( h )  do cone por Pitágoras:

\large \text {$h^2 = g^2 + r^2$}\\\\\large \text {$h^2 = 3^2 - 1^2$}\\\\\large \text {$h^2 = 9 - 1$}\\\\\large \text {$h^2 =8$}\\\\\large \text {$h =\sqrt{8} $}\\\\\large \text {$h =2\sqrt{2} ~cm $}

Encontrar  o volume do cone:

\large \text {$V = \dfrac{\pi ~. ~r^2 ~. ~h}{3}    $}\\\\\\\large \text {$V = \dfrac{\pi ~. ~1^2 ~. ~2\sqrt{2} }{3}    $}\\\\\\\large \text {$V = \dfrac{\pi ~. ~1 ~. ~2\sqrt{2} }{3}    $}\\\\\\\large \text {$V = \dfrac{2\pi \sqrt{2} }{3}  ~~cm ^3   $}\\\\\\

Encontrar a área total do cone:

\large \text {$ A_t=  \pi~. ~r (r + g)   $}\\\\\\\large \text {$ A_t=  \pi~. ~ 1 (1 + 3)   $}\\\\\\\large \text {$ A_t=  \pi~. ~ 1 ~. ~(4)   $}\\\\\\\large \text {$ A_t =4  \pi~cm^2  $}\\\\\\

===

Para saber mais:

https://brainly.com.br/tarefa/49334588

https://brainly.com.br/tarefa/49442919

https://brainly.com.br/tarefa/49499983

https://brainly.com.br/tarefa/49529521

Anexos:

SocratesA: Ótima Resposta Mestre Helvio.
Perguntas similares