Respostas
respondido por:
1
a= 1/(1+x) e b = 1 - x
a + b = 1/(1+x)+(1-x) = [ 1 + (1+x)·(1-x)] / (1+x) =[1+(1²-x²)] / (1+x) =[1+1-x²] / (1+x)= (2 - x²) / (1+x)
a - b = 1/(1+x) - ( 1-x)= [1-(1-x)·(1+x) ] / (1+x) =[1-(1²-x²)] / (1+x) =
[ 1 - 1 + x²] / (1+x) = x² / (1+x)
(a+b) / (a- b) =[ (2 - x²) / (1+x)] / [ x² / (1+x) ] =
[ (2 - x²) / (1+x)] ·[ (1+x) / x² ] = ( 2 - x²) / x²
resposta : ( 2 - x²) / x²
a + b = 1/(1+x)+(1-x) = [ 1 + (1+x)·(1-x)] / (1+x) =[1+(1²-x²)] / (1+x) =[1+1-x²] / (1+x)= (2 - x²) / (1+x)
a - b = 1/(1+x) - ( 1-x)= [1-(1-x)·(1+x) ] / (1+x) =[1-(1²-x²)] / (1+x) =
[ 1 - 1 + x²] / (1+x) = x² / (1+x)
(a+b) / (a- b) =[ (2 - x²) / (1+x)] / [ x² / (1+x) ] =
[ (2 - x²) / (1+x)] ·[ (1+x) / x² ] = ( 2 - x²) / x²
resposta : ( 2 - x²) / x²
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás