• Matéria: Matemática
  • Autor: hponge
  • Perguntado 9 anos atrás

N 28 ...................

Anexos:

Respostas

respondido por: ProfAmaral
1

Sendo f e g funções de IR em IR, dadas por f(x) = 4x - 4 e g(x) = -2x² + x - 1. Resolva, em IR as seguintes equações:
---------------------------------------------------------------------------------------------------
a) f(g(x)) = -8
4 · g(x) - 4 = -8
4 · (-2x² + x - 1) - 4 = -8
4 · (-2x² + x - 1) - 4 = -8
4 · [(-2x² + x - 1) - 1] = -8
(-2x² + x - 1) - 1 = -8/4
-2x² + x - 1 - 1 = -2
-2x² + x - 2 + 2 = 0
-2x² + x = 0            (:x) ⇒ x = 0
-2x + 1 = 0
-2x = 0-1
-2x = -1
x = -1/-2
x = 1/2
s = {0, 1/2}
---------------------------------------------------------------------------------------------------
b) f(x) = g(3)
4x - 4 = -2 · 3² + 3 - 1
4x - 4 = -2 · 9 + 3 - 1
4x - 4 = -18 + 3 - 1
4x = -18 + 3 - 1 + 4
4x = -12
x =-12/4
x = -3
S = {-3}
---------------------------------------------------------------------------------------------------
c) g(f(x)) = 0
-2 · f(x)² + f(x) - 1 = 0
-2 · (4x - 4)² + (4x - 4) - 1 = 0
-2 · (16x² - 32x + 16) + 4x - 4 - 1 = 0
-32x² + 64x - 32 + 4x - 4 - 1 = 0
-32x² + 64x + 4x - 32 - 4 - 1 = 0
-32x² + 68x - 37 = 0
a = -32
b = 68
c = -37
Δ = b² - 4ac = 68² - 4 · (-32) · (-37) = 4624 - 4736 = -112, logo Δ < 0
S = ∅

ProfAmaral: Obrigado.
Perguntas similares