Respostas
respondido por:
0
x+2)-√2x]/(x-2)=
x--->2
Lim[√(x+2)-√2x]/
x--->2
/(x-2).[√(x+2)+√2x]/[√(x+2)+√2x]=
Lim[x+2-2x]/
x--->2
/[x√(x+2)-2√(x+2)+x√2x-2√2x]=
Lim[-x+2]/[(x-2)√(x+2)+(x-2)√2x]=
x--->2
Lim-[x-2]/(x-2)[√(x+2)+√2x]=
x--->2
Lim-1/[√(x+2)+√2x]=
x--->2
Lim-1/[√(2+2)+√2.2]=
x--->2
Lim-1/[√4+√4]=
x--->2
Lim-1/[2+2]=-1/4
x--->2
x--->2
Lim[√(x+2)-√2x]/
x--->2
/(x-2).[√(x+2)+√2x]/[√(x+2)+√2x]=
Lim[x+2-2x]/
x--->2
/[x√(x+2)-2√(x+2)+x√2x-2√2x]=
Lim[-x+2]/[(x-2)√(x+2)+(x-2)√2x]=
x--->2
Lim-[x-2]/(x-2)[√(x+2)+√2x]=
x--->2
Lim-1/[√(x+2)+√2x]=
x--->2
Lim-1/[√(2+2)+√2.2]=
x--->2
Lim-1/[√4+√4]=
x--->2
Lim-1/[2+2]=-1/4
x--->2
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás