• Matéria: Matemática
  • Autor: joaodederaneves
  • Perguntado 9 anos atrás

qual o valor da area destacada na figura abaixo;

Anexos:

Respostas

respondido por: Anônimo
7
Boa noite João!

Solução!

A=\displaystyle \int_{1}^{4} (\sqrt{x})dx\\\\\\\\\\
A=\displaystyle \int_{1}^{4} \frac{( x)^{ \frac{1}{2}+1 } }{ \frac{1}{2}} dx\\\\\\\\\\
A=\displaystyle \int_{1}^{4} \frac{( x)^{ \frac{1}{2}+1 } }{ \frac{1}{2}+1} dx\\\\\\\\\\
A=\displaystyle \int_{1}^{4} \frac{( x)^{ \frac{1}{2}+1 } }{ \frac{1}{2}+1} dx\\\\\\\\\
A=\frac{( x)^{ \frac{3}{2}} }{ \frac{3}{2}}~~\bigg|_{1}^{4}  \\\\\\\\\\
A= \frac{ \sqrt{x^{3} } }{ \frac{3}{2} } ~~\bigg|_{1}^{4}  \\\\\\\


A=  \frac{2}{3} \sqrt{ x^{3} } ~~\bigg|_{1}^{4} \\\\\\\
A= (\frac{2}{3} \sqrt{ x^{3} })-(\frac{2}{3} \sqrt{ x^{3} }) \\\\\\\
A= (\frac{2}{3} \sqrt{(4)^{3} })-(\frac{2}{3} \sqrt{(1)^{3} })\\\\\\\
A= (\frac{2}{3} \sqrt{64 })-(\frac{2}{3} \sqrt{1})\\\\\\\ 
A= (\frac{2}{3}.8)-(\frac{2}{3}.1)\\\\\\\ 
A= (\frac{16}{3})-(\frac{2}{3})\\\\\\\
A= (\frac{16-2}{3})\\\\\\\ 
A= \frac{14}{3}u.a


\boxed{Resposta:A= \frac{14}{3}u.a~~\boxed{Alternativa~~b}}

Boa noite!
Bons estudos!


Perguntas similares