Respostas
respondido por:
1
RESOLUÇÃO DE UMA EQUAÇÃO BIQUADRADA
Na resolução de uma equação biquadrada em IR devemos substituir sua variável, transformando-a numa equação do 2º grau.
Observe agora a sequência que deve ser utilizada na resolução de uma equação biquadrada.
Seqüência prática
Substitua x4 por y2 ( ou qualquer outra incógnita elevada ao quadrado) e x2 por y.
Resolva a equação ay2 + by + c = 0
Determine a raiz quadrada de cada uma da raízes ( y'e y'') da equação ay2 + by + c = 0.

Essas duas relações indicam-nos que cada raiz positiva da equação ay2 + by + c = 0 dá origem a duas raízes simétricas para a biquadrada: a raiz negativa não dá origem a nenhuma raiz real para a mesma.
Exemplos:
Determine as raízes da equação biquadrada x4 - 13 x2+ 36 = 0.
Solução
Substituindo x4 por y2 e x2 por y, temos:
y2 - 13y + 36 = 0
Resolvendo essa equação, obtemos:
y'=4 e y''=9
Como x2= y, temos:

Logo, temos para conjunto verdade: V={ -3, -2, 2, 3}.
Determine as raízes da equação biquadrada x4 + 4x2 - 60 = 0.
Solução
Substituindo x4 por y2 e x2 por y, temos:
y2 + 4y - 60 = 0
Resolvendo essa equação, obtemos:
y'=6 e y''= -10
Como x2= y, temos:

Logo, temos para o conjunto verdade:.
Espero ter ajudado, peguei de um site na Net
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás