• Matéria: Matemática
  • Autor: Rafaas
  • Perguntado 9 anos atrás

sendo log2=0,3,l log3=0,4 e log5=0,7 calcule:
a)log₂50  b)log₈600 

Respostas

respondido por: Niiya
5
log_{x}(a*b*c)=log_{x}(a)+log_{x}(b)+log_{x}(c)\\log_{b}(a^{n})=n*log_{b}(a)\\log_{(b^{n})}(a)=(1/n)*log_{b}(a)

Mudança de base (a pra b): log_{a}(x)=log_{b}(x)/log_{b}(a)
______________________

a)

log_{2}(50)=log_{10}(50)/log_{10}(2)\\log_{2}(50)=log~50/log~2\\log_{2}(50)=log~(5*10)/log~2\\log_{2}(50)=(log~5+log~10)/log~2\\log_{2}(50)=(0,7+1)/0,3\\log_{2}(50)=1,7/0,3\\log_{2}(50)=17/3\\log_{2}(50)=5,7

b)

log_{8}(600)=log_{(2^{3})}(600)\\log_{8}(600)=(1/3)*log_{2}(600)\\log_{8}(600)=(1/3)*log~600/log~2\\log_{8}(600)=(1/3)*log(2*3*10^{2})/0,3\\log_{8}(600)=(1/[3*0,3])*(log~2+log~3+log~10^{2})\\log_{8}(600)=(1/0,9)*(0,3+0,4+2*log~10)\\log_{8}(600)=(1/[9/10])*(0,7+2*1)\\log_{8}(600)=(10/9)*(0,7+2)\\log_{8}(600)=(10/9)*2,7\\log_{8}(600)=(10/9)+(27/10)\\log_{8}(600)=27/9\\log_{8}(600)=3

Perguntas similares