• Matéria: Matemática
  • Autor: brenagabriela8
  • Perguntado 9 anos atrás

(FGV-SP)O lucro mensal de uma empresa é dado por L= -x^2 +30x -5 ,em que x é a quantidade mensal vendida.

a)Qual o lucro mensal máximo possível?
b)Entre que valores deve variar x para que o lucro mensal seja no minimo igual a 195?

Respostas

respondido por: mozarth11
33
a = -1, b = 30, c = -5
a)
Δ = 30² - 4.(-1).(-5)
Δ = 900 - 20
Δ = 880
Lucro máximo:
yV = -Δ/4a
yV = -880/4.(-1)
yV = -880/-4
yV = 880/4
yV = 220

b)
-x² + 30x - 5 = 195
-x² + 30x - 5 - 195 = 0
-x² + 30x - 200 = 0 .(-1)
x² - 30x + 200 = 0
Δ = (-30)² - 4.1.200
Δ = 900 - 800
Δ = 100
x = (-(-30)+/-√100)/2
x = (30+/-10)/2
x' = (30+10)/2 = 40/2 = 20
x" = (30-10)/2 = 20/2 = 10

10 ≤ x ≤20
Perguntas similares